Refine Your Search

Topic

Author

Search Results

Journal Article

Design Optimization of a Series Plug-in Hybrid Electric Vehicle for Real-World Driving Conditions

2010-04-12
2010-01-0840
This paper proposes a framework to perform design optimization of a series PHEV and investigates the impact of using real-world driving inputs on final design. Real-World driving is characterized from a database of naturalistic driving generated in Field Operational Tests. The procedure utilizes Markov chains to generate synthetic drive cycles representative of real-world driving. Subsequently, PHEV optimization is performed in two steps. First the optimal battery and motor sizes to most efficiently achieve a desired All Electric Range (AER) are determined. A synthetic cycle representative of driving over a given range is used for function evaluations. Then, the optimal engine size is obtained by considering fuel economy in the charge sustaining (CS) mode. The higher power/energy demands of real-world cycles lead to PHEV designs with substantially larger batteries and engines than those developed using repetitions of the federal urban cycle (UDDS).
Journal Article

Premixed Low Temperature Combustion of Biodiesel and Blends in a High Speed Compression Ignition Engine

2009-04-20
2009-01-0133
The effects of combining premixed, low temperature combustion (LTC) with biodiesel are relatively unknown to this point. This mode allows simultaneously low soot and NOx emissions by using high rates of EGR and increasing ignition delay. This paper compares engine performance and emissions of neat, soy-based methyl ester biodiesel (B100), B20, B50, pure ultra low sulfur diesel (ULSD) and a Swedish, low aromatic diesel in a multi-cylinder diesel engine operating in a late-injection premixed LTC mode. Using heat release analysis, the progression of LTC combustion was explored by comparing fuel mass fraction burned. B100 had a comparatively long ignition delay compared with Swedish diesel when measured by start of ignition (SOI) to 10% fuel mass fraction burned (CA10). Differences were not as apparent when measured by SOI to start of combustion (SOC) even though their cetane numbers are comparable.
Journal Article

Diesel EGR Cooler Fouling

2008-10-06
2008-01-2475
The buildup of deposits in EGR coolers causes significant degradation in heat transfer performance, often on the order of 20-30%. Deposits also increase pressure drop across coolers and thus may degrade engine efficiency under some operating conditions. It is unlikely that EGR cooler deposits can be prevented from forming when soot and HC are present. The presence of cooled surfaces will cause thermophoretic soot deposition and condensation of HC and acids. While this can be affected by engine calibration, it probably cannot be eliminated as long as cooled EGR is required for emission control. It is generally felt that “dry fluffy” soot is less likely to cause major fouling than “heavy wet” soot. An oxidation catalyst in the EGR line can remove HC and has been shown to reduce fouling in some applications. The combination of an oxidation catalyst and a wall-flow filter largely eliminates fouling. Various EGR cooler designs affect details of deposit formation.
Journal Article

Highly Turbocharged Gasoline Engine and Rapid Compression Machine Studies of Super-Knock

2016-04-05
2016-01-0686
Super-knock has been a significant obstacle for the development of highly turbocharged (downsized) gasoline engines with spark ignition, due to the catastrophic damage super-knock can cause to the engine. According to previous research by the authors, one combustion process leading to super-knock may be described as hot-spot induced pre-ignition followed by deflagration which can induce detonation from another hot spot followed by high pressure oscillation. The sources of the hot spots which lead to pre-ignition (including oil films, deposits, gas-dynamics, etc.) may occur sporadically, which leads to super-knock occurring randomly at practical engine operating conditions. In this study, a spark plasma was used to induce preignition and the correlation between super-knock combustion and the thermodynamic state of the reactant mixture was investigated in a four-cylinder production gasoline engine.
Technical Paper

Worst Case Scenarios Generation and Its Application on Driving

2007-08-05
2007-01-3585
The current test methods are insufficient to evaluate and ensure the safety and reliability of vehicle system for all possible dynamic situations including the worst cases such as rollover, spin-out and so on. Although the known NHTSA J-turn and Fish-hook steering maneuvers are applied for the vehicle performance assessment, they are not enough to predict other possible worst case scenarios. Therefore, it is crucial to search for the various worst cases including the existing severe steering maneuvers. This paper includes the procedure to search for other useful worst case based upon the existing worst case scenarios in terms of rollover and its application in simulation basis. The human steering angle is selected as a design variable and optimized to maximize the index function to be expressed in terms of vehicle roll angle. The obtained scenarios were enough to generate the worse cases than NHTSA ones.
Technical Paper

A Knowledge Representation Scheme for Nondestructive Testing of Composite Components

1990-02-01
900070
This paper presents our efforts to formalize the knowledge domain of nondestructive quality control of automotive composite components with organic (resin) matrices and to develop a prototype knowledge-based system, called NICC for Nondestructive Inspection of Composite Components, to help in the quality assurance of individual components. Geometric and bonding characteristics of parts and assemblies are taken into account, as opposed to the better understood evaluation of test specimens. The reasoning process was divided in two stages: in the first stage all flaws that might be present in the given part are characterized; in the second stage appropriate nondestructive testing procedures are specified to detect each of the possible flaws. The use of nondestructive techniques in the inspection of composites is fairly recent and hence, the knowledge required to develop an expert system is still very scattered and not fully covered in the literature.
Technical Paper

Analysis of Temperatures and Stresses in Wet Friction Disks Involving Thermally Induced Changes of Contact Pressure

1998-09-14
982035
Thermal distortions of friction disks caused by frictional heating modify pressure distribution on friction surfaces. Pressure distribution, in turn, determines distribution of generated frictional heat. These interdependencies create a complex thermoelastic system that, under some conditions, may become unstable and may lead to severe pressure concentrations with very high local temperature and stress. The phenomenon is responsible for many common thermal failure modes of friction elements and is known as frictionally excited thermoelastic instability (TEI). In the paper, one of the cases of TEI is investigated theoretically and experimentally. The study involves a two-disk structure with one fiction disk and one matching steel disk that have one friction interface. An unsteady heat conduction problem and an elastic contact problem are modeled as axisymmetric ones and are solved using the finite element method.
Technical Paper

An Experimental Investigation of Transient Heat Losses to Tank Wall During the Inflator Tank Test

1998-09-29
982326
A series of inflator tank tests was carried out to determine the amount of transient heat losses to the tank wall during these tests. The time history data of tank wall temperature, and tank interior gas temperature and pressure, were measured. The tank wall temperature data were analyzed using an inverse heat conduction method to generate the transient heat loss fluxes from the tank gas to the tank wall. The validity of the results are discussed along with the physical reasoning and experimental observations. This is the first part of an effort in a research project to develop a comprehensive heat transfer model to predict the transient heat losses to the tank wall during the inflator tank test.
Technical Paper

Simulation for the Response of a Structure Subjected to a Load from an Explosion

2008-04-14
2008-01-0781
Utilizing simulation technology is important for designing a structure with increased survivability to a load from an explosion. The pressure wave from the blast and the fragments hitting the structure must be simulated in such an analysis. Commercial software can be utilized through the development of appropriate interfaces for performing such computations. In this paper an approach is presented for combining commercially available Eulerian and Lagrangian solvers for performing blast event simulations. A capability has been developed for automatically creating the Eulerian finite element given the finite element model for the structure. The effect of moisture in the soil properties is considered during the generation of the soil - explosive - air model used by the Eulerian solver. Tracers are defined in the Eulerian model for all structural finite elements which are on the outer part of the structure and are subjected to the load from the blast.
Technical Paper

Simulation Based Assessment of Plug-in Hybrid Electric Vehicle Behavior During Real-World 24-Hour Missions

2010-04-12
2010-01-0827
This paper proposes a simulation based methodology to assess plug-in hybrid vehicle (PHEV) behavior over 24-hour periods. Several representative 24-hour missions comprise naturalistic cycle data and information about vehicle resting time. The data were acquired during Filed Operational Tests (FOT) of a fleet of passenger vehicles carried out by the University of Michigan Transportation Research Institute (UMTRI) for safety research. Then, PHEV behavior is investigated using a simulation with two different charging scenarios: (1) Charging overnight; (2) Charging whenever possible. Charging/discharging patterns of the battery as well as trends of charge depleting (CD) and charge sustaining (CS) modes at each scenario were assessed. Series PHEV simulation is generated using Powertrain System Analysis Toolkit (PSAT) developed by Argonne National Laboratory (ANL) and in-house Matlab codes.
Technical Paper

Load Limits with Fuel Effects of a Premixed Diesel Combustion Mode

2009-06-15
2009-01-1972
Premixed diesel combustion is intended to supplant conventional combustion in the light to mid load range. This paper demonstrates the operating load limits, limiting criteria, and load-based emissions behavior of a direct-injection, diesel-fueled, premixed combustion mode across a range of test fuels. Testing was conducted on a modern single-cylinder engine fueled with a range of ultra-low sulfur fuels with cetane number ranging from 42 to 53. Operating limits were defined on the basis of emissions, noise, and combustion stability. The emissions behavior and operating limits of the tested premixed combustion mode are independent of fuel cetane number. Combustion stability, along with CO and HC emissions levels, dictate the light load limit. The high load limit is solely dictated by equivalence ratio: high PM, CO, and HC emissions result as overall equivalence ratio approaches stoichiometric.
Technical Paper

Experimental Investigation of the Flow Around a Generic SUV

2004-03-08
2004-01-0228
The results of an experimental investigation of the flow in the near wake of a generic Sport Utility Vehicle (SUV) model are presented. The main goals of the study are to gain a better understanding of the external aerodynamics of SUVs, and to obtain a comprehensive experimental database that can be used as a benchmark to validate math-based CFD simulations for external aerodynamics. Data obtained in this study include the instantaneous and mean pressures, as well as mean velocities and turbulent quantities at various locations in the near wake. Mean pressure coefficients on the base of the SUV model vary from −0.23 to −0.1. The spectrum of the pressure coefficient fluctuation at the base of the model has a weak peak at a Strouhal number of 0.07. PIV measurements show a complex three-dimensional recirculation region behind the model of length approximately 1.2 times the width of the model.
Technical Paper

Experimental and Computational Study of Unsteady Wake Flow Behind a Bluff Body with a Drag Reduction Device

2001-03-05
2001-01-1042
Simple devices have been shown to be capable of tailoring the flow field around a vehicle and reducing aerodynamic drag. An experimental and computational investigation of a drag reduction device for bluff bodies in ground proximity has been conducted. The main goal of the research is to gain a better understanding of the drag reduction mechanisms in bluff-body square-back geometries. In principle, the device modifies the flow field behind the test model by disturbing the shear layer. As a consequence, the closure of the wake is altered and reductions in aerodynamic drag of more than 20 percent are observed. We report unsteady base pressure, hot-wire velocity fluctuations and Particle Image Velocimetry (PIV) measurements of the near wake of the two models (baseline and the modified models). In addition, the flows around the two configurations are simulated using the Reynolds Averaged Navier-Stokes (RANS) equations in conjunction with the V2F turbulence model.
Technical Paper

History of Emissions Reduction: Normal Emitters in FTP-type Driving

2001-03-05
2001-01-0229
Information is readily available on how a vehicle model's emissions system performs under certification conditions, but it is not widely known how it performs after years of use. This study predicts the odometer dependence of in-use car emissions, in grams per mile (gpm), over many model years. To do this, model years are analyzed starting in the mid 1980's until the mid 1990's. High emitters are eliminated from the study using a vehicle probability distribution technique. Emissions data was obtained from EPA's long-term Federal Test Procedure (FTP) survey, AAMA, CARB's Light Duty Vehicle Surveillance Program (LDVSP 14), and University of California Riverside CMEM database. The UCR data includes second-by-second engine-out and tailpipe-out emissions. Emissions system durability was found by comparing the emissions of vehicles of the same model year at different odometer readings.
Technical Paper

Development and Validation of a Computational Process for Pass-By Noise Simulation

2001-04-30
2001-01-1561
The Indirect Boundary Element Analysis is employed for developing a computational pass-by noise simulation capability. An inverse analysis algorithm is developed in order to generate the definition of the main noise sources in the numerical model. The individual source models are combined for developing a system model for pass-by noise simulation. The developed numerical techniques are validated through comparison between numerical results and test data for component level and system level analyses. Specifically, the source definition capability is validated by comparing the actual and the computationally reconstructed acoustic field for an engine intake manifold. The overall pass-by noise simulation capability is validated by computing the maximum overall sound pressure level for a vehicle under two separate driving conditions.
Technical Paper

Late-Cycle Turbulence Generation in Swirl-Supported, Direct-Injection Diesel Engines

2002-03-04
2002-01-0891
Cycle-resolved analysis of velocity data obtained in the re-entrant bowl of a fired high-;speed, direct-injection diesel engine, demonstrates an unambiguous, approximately 100% increase in late-cycle turbulence levels over the levels measured during motored operation. Model predictions of the flow field, obtained employing RNG k-ε turbulence modeling in KIVA-3V, do not capture this increased turbulence. A combined experimental and computational approach is taken to identify the source of this turbulence. The results indicate that the dominant source of the increased turbulence is associated with the formation of an unstable distribution of mean angular momentum, characterized by a negative radial gradient. The importance of this source of flow turbulence has not previously been recognized for engine flows. The enhanced late-cycle turbulence is found to be very sensitive to the flow swirl level.
Technical Paper

Experimental Investigation of the Near Wake of a Pick-up Truck

2003-03-03
2003-01-0651
The results of an experimental investigation of the flow over a pickup truck are presented. The main objectives of the study are to gain a better understanding of the flow structure in near wake region, and to obtain a detailed quantitative data set for validation of numerical simulations of this flow. Experiments were conducted at moderate Reynolds numbers (∼3×105) in the open return tunnel at the University of Michigan. Measured quantities include: the mean pressure on the symmetry plane, unsteady pressure in the bed, and Particle Image Velocimetry (PIV) measurements of the flow in the near wake. The unsteady pressure results show that pressure fluctuations in the forward section of the bed are small and increase significantly at the edge of the tailgate. Pressure fluctuation spectra at the edge of the tailgate show a spectral peak at a Strouhal number of 0.07 and large energy content at very low frequency.
Technical Paper

An Experimental Assessment of Turbulence Production, Reynolds Stress and Length Scale (Dissipation) Modeling in a Swirl-Supported DI Diesel Engine

2003-03-03
2003-01-1072
Simultaneous measurements of the radial and the tangential components of velocity are obtained in a high-speed, direct-injection diesel engine typical of automotive applications. Results are presented for engine operation with fuel injection, but without combustion, for three different swirl ratios and four injection pressures. With the mean and fluctuating velocities, the r-θ plane shear stress and the mean flow gradients are obtained. Longitudinal and transverse length scales are also estimated via Taylor's hypothesis. The flow is shown to be sufficiently homogeneous and stationary to obtain meaningful length scale estimates. Concurrently, the flow and injection processes are simulated with KIVA-3V employing a RNG k-ε turbulence model. The measured turbulent kinetic energy k, r-θ plane mean strain rates ( 〈Srθ〉, 〈Srr〉, and 〈Sθθ〉 ), deviatoric turbulent stresses , and the r-θ plane turbulence production terms are compared directly to the simulated results.
Technical Paper

Oil Film Dynamic Characteristics for Journal Bearing Elastohydrodynamic Analysis Based on a Finite Difference Formulation

2003-05-05
2003-01-1669
A fast and accurate journal bearing elastohydrodynamic analysis is presented based on a finite difference formulation. The governing equations for the oil film pressure, stiffness and damping are solved using a finite difference approach. The oil film domain is discretized using a rectangular two-dimensional finite difference mesh. In this new formulation, it is not necessary to generate a global fluidity matrix similar to a finite element based solution. The finite difference equations are solved using a successive over relaxation (SOR) algorithm. The concept of “Influence Zone,” for computing the dynamic characteristics is introduced. The SOR algorithm and the “Influence Zone” concept significantly improve the computational efficiency without loss of accuracy. The new algorithms are validated with numerical results from the literature and their numerical efficiency is demonstrated.
Technical Paper

A Comparative Study of Two RVE Modelling Methods for Chopped Carbon Fiber SMC

2017-03-28
2017-01-0224
To advance vehicle lightweighting, chopped carbon fiber sheet molding compound (SMC) is identified as a promising material to replace metals. However, there are no effective tools and methods to predict the mechanical property of the chopped carbon fiber SMC due to the high complexity in microstructure features and the anisotropic properties. In this paper, a Representative Volume Element (RVE) approach is used to model the SMC microstructure. Two modeling methods, the Voronoi diagram-based method and the chip packing method, are developed to populate the RVE. The elastic moduli of the RVE are calculated and the two methods are compared with experimental tensile test conduct using Digital Image Correlation (DIC). Furthermore, the advantages and shortcomings of these two methods are discussed in terms of the required input information and the convenience of use in the integrated processing-microstructure-property analysis.
X