Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

Effects of Large-Radius Convex Rearview Mirrors on Driver Perception

1997-02-24
970910
The U.S. currently requires that reai-view mirrors installed as original equipment in the center and driver-side positions be flat. There has recently been interest in using nonplanar mirrors in those positions, including possibly mirrors with large radii (over 2 m). This has provided additional motivation to understand the effects of mirror curvature on drivers' perceptions of distance and speed. This paper addresses this issue by (1) reviewing the concepts from perceptual theory that are most relevant to predicting and understanding how drivers judge distance in nonplanar rearview mirrors, and (2) reviewing the past empirical studies that have manipulated mirror curvature and measured some aspect of distance perception. The effects of mirror curvature on cues for distance perception do not lead to simple predictions. The most obvious model is one based on visual angle, according to which convex mirrors should generally lead to overestimation of distances.
Technical Paper

Driver Perceptual Adaptation to Nonplanar Rearview Mirrors

1996-02-01
960791
This study examined perceptual adaptation to nonplanar (spherical convex and aspheric) rearview mirrors. Subjects made magnitude estimates of the distance to a car seen in a rearview mirror. Three different mirrors were used: plane, aspheric (with a large spherical section having a radius of 1400 mm), and simple convex (with a radius of 1000 mm). Previous research relevant to perceptual adaptation to nonplanar mirrors was reviewed. It was argued that, in spite of some cases of explicit interest in the process of learning to use nonplanar mirrors, previous research has not adequately addressed the possibility of perceptual adaptation. The present experiment involved three phases: (1) a pretest phase in which subjects made distance judgments but received no feedback, (2) a training phase in which they made judgments and did receive feedback, and (3) a posttest phase with the same procedure as the pretest phase.
Technical Paper

Comparison of Airbag-Aggressivity Predictors in Relation to Forearm Fractures

1998-02-23
980856
Four unembalmed human cadavers were used in eight direct-forearm-airbag-interaction static deployments to assess the relative aggressivity of two different airbag modules. Instrumentation of the forearm bones included triaxial accelerometry, crack detection gages, and film targets. The forearm-fracture predictors, peak and average distal forearm speed (PDFS and ADFS), were evaluated and compared to the incidence of transverse, oblique, and wedge fractures of the radius and ulna. Internal-airbag pressure and axial column loads were also measured. The results of this study support the use of PDFS or ADFS for the prediction of airbag-induced upper-extremity fractures. The results also suggest that there is no direct relationship between internal-airbag pressure and forearm fracture. The less-aggressive system (LAS) examined in this study produced half the number of forearm fracture as the more-aggressive system (MAS), yet exhibited a more aggressive internal-pressure performance.
Technical Paper

On-the-Road Visual Performance with Electrochromic Rearview Mirrors

1995-02-01
950600
This study was part of a series of studies on variable-reflectance rearview mirrors. Previous work included laboratory studies of human visual performance, field collection of photometric data, and mathematical modeling of the visual benefits of variable-reflectance mirrors. We extended that work in this study by collecting photometric and human-performance data while subjects drove in actual traffic. Three mirror conditions were investigated: (1) fixed-reflectance mirrors in the center and driver-side positions, (2) a variable-reflectance mirror in the center with a fixed-reflectance mirror on the driver side, and (3) variable-reflectance mirrors in both positions. The fixed and variable reflectivities were produced by the same mirrors by overriding the circuitry that normally controlled reflectance in the variable mode.
Technical Paper

A Simulation Graphical User Interface for Vehicle Dynamics Models

1995-02-01
950169
This paper describes the architecture and use of a simulation graphical user interface (SGUI) that uses new (1990's) computer hardware and software concepts to provide an easy-to-use environment for simulating vehicle dynamics. The user interacts with windows, buttons, and pop-up menus, in a multitasking environment such as UNIX, Windows®, or Mac OS®. The SGUI reduces the level of computer expertise required of the user. Most information is shown in a graphic context, and “what if?” options are selected by clicking buttons and selecting from pop-up menus. The SGUI is organized as a data base of vehicles, vehicle parts, vehicle inputs, and simulation results. The organization makes it easy for users to assemble the component data needed to (1) simulate new systems, (2) run simulation programs automatically, and (3) view the results graphically. The SGUI is assembled from low-cost software components.
Technical Paper

Upper Extremity Injuries Related to Air Bag Deployments

1994-03-01
940716
From our crash investigations of air bag equipped passenger cars, a subset of upper extremity injuries are presented that are related to air bag deployments. Minor hand, wrist or forearm injuries-contusions, abrasions, and sprains are not uncommonly reported. Infrequently, hand fractures have been sustained and, in isolated cases, fractures of the forearm bones or of the thumb and/or adjacent hand. The close proximity of the forearm or hand to the air bag module door is related to most of the fractures identified. Steering wheel air bag deployments can fling the hand-forearm into the instrument panel, rearview mirror or windshield as indicated by contact scuffs or tissue debris or the star burst (spider web) pattern of windshield breakage in front of the steering wheel.
Technical Paper

Rearward Vision, Driver Confidence, and Discomfort Glare Using an Electrochromic Rearview Mirror

1991-02-01
910822
Electrochromic rearview mirrors can provide continuous levels of reflectivity and unobtrusive, automatic control. The availability of this technology has increased the importance of understanding how to select the best level of reflectivity for a given set of lighting conditions. For night driving with glare from following headlights, the best reflectivity level will always depend on a tradeoff among several variables. This study was designed to help clarify what variables are important and how they should be quantified. Twenty subjects, 10 younger and 10 older, performed a number of visual tasks while viewing stimuli through an electrochromic rearview mirror. Subjects were seated in an automobile mockup in a laboratory, and the reflectivity level of the mirror was changed before each of a series of discrete trials. On each trial, subjects saw reflected in the mirror a visual-acuity stimulus and a glare source of varying intensity.
Technical Paper

UMTRI Experimental Techniques in Head Injury Research

1985-06-01
851244
This paper discusses techniques developed and used by the Biosciences Group at the University of Michigan Transportation Research Institute (UMTRI) for measuring three-dimensional head motion, skull bone strain, epidural pressure, and internal brain motion of repressurized cadavers and Rhesus monkeys during head impact. In the experimental design, a stationary test subject is struck by a guided moving impactor of 10 kg (monkeys) and 25 or 65 kg (cadavers). The impactor striking surface is fitted with padding to vary the contact force-time characteristics. The experimental technique uses a nine-accelerometer system rigidly affixed to the skull to measure head motion, transducers placed at specific points below the skull to record epidural pressure, repressurization of both the vascular and cerebrospinal systems, and high-speed cineradiography (at 1000 frames per second) of radiopaque targets.
Technical Paper

Investigating Driver Headroom Perception: Methods and Models

1999-03-01
1999-01-0893
Recent changes in impact protection requirements have led to increased padding on vehicle interior surfaces. In the areas near the driver's head, thicker padding can reduce the available headspace and may degrade the driver's perception of headroom. A laboratory study of driver headroom perception was conducted to investigate the effects of physical headroom on the subjective evaluation of headroom. Ninety-nine men and women rated a range of headroom conditions in a reconfigurable vehicle mockup. Unexpectedly, driver stature was not closely related to the perception of headroom. Short-statured drivers were as likely as tall drivers to rate a low roof condition as unacceptable. Statistical models were developed from the data to predict the effects of changes in headroom on the percentage of drivers rating the head-room at a specified criterion level.
Technical Paper

Underride in Fatal Rear-End Truck Crashes

2000-12-04
2000-01-3521
For the 1997 data year, UMTRI's Center for National Truck Statistics collected data on rear underride as part of its Trucks Involved in Fatal Accidents (TIFA) survey. Data collected included whether the truck had a rear underride guard, whether the striking vehicle underrode the truck, and how much underride occurred. A primary goal was to evaluate rear underride of straight trucks. Overall, 453 medium and heavy trucks were struck in the rear by a nontruck vehicle in a fatal crash in 1997. Some underride occurred in at least 272 (60.0%) of the rear-end crashes. For straight trucks, there was some underride in 77 (52.0%) of the crashes, no underride occurred in 43 (29.1%) of the fatal rear-end crashes, and underride could not be determined in the remaining 28 (18.9%) straight truck rear-end crashes. Despite the fact that three-fourths of tractor combinations had an underride guard on the trailer, underride was more common for tractor combinations.
Technical Paper

Geometric Visibility of Mirror Mounted Turn Signals

2005-04-11
2005-01-0449
Turn signals mounted on exterior rearview mirrors are increasingly being used as original equipment on passenger cars and light trucks. The potential for mirror-mounted turn signals (MMTS) to improve the geometric visibility of turn signals is examined in this paper. A survey of U.S. and UN-ECE regulations showed that the turn signals of a vehicle that is minimally compliant with U.S. regulations are not visible to a driver of a nearby vehicle in an adjacent lane. Measurements of mirror location and window geometry were made on 74 passenger cars and light trucks, including 38 vehicles with fender-mounted turn signals (FMTS). These data were combined with data on driver eye locations from two previous studies to assess the relative visibility of MMTS and conventional signals. Simulations were conducted to examine the potential for signals to be obstructed when a driver looks laterally through the passenger-side window.
Technical Paper

A Method for Measuring the Field of View in Vehicle Mirrors

2003-03-03
2003-01-0297
A new method is presented for physically measuring drivers' field of view in rearview mirrors. A portable coordinate measurement apparatus (FARO Arm) is used to measure the mirror locations, contours, and curvature. Measurements of the driver's head and eye locations while looking into each mirror are also made. Raytracing is used to map the two- or three-dimensional field of view in each mirror. The method differentiates between monocular, binocular, and ambinocular fields of view, and can account for head movements. This method has been applied to passenger cars, light trucks, and heavy trucks to document how drivers aim their mirrors during normal use.
Technical Paper

Knee, Thigh and Hip Injury Patterns for Drivers and Right Front Passengers in Frontal Impacts

2003-03-03
2003-01-0164
Late model passenger cars and light trucks incorporate occupant protection systems with airbags and knee restraints. Knee restraints have been designed principally to meet the unbelted portions of FMVSS 208 that require femur load limits of 10-kN to be met in barrier crashes up to 30 mph, +/- 30 degrees utilizing the 50% male Anthropomorphic Test Device (ATD). In addition, knee restraints provide additional lower-torso restraint for belt-restrained occupants in higher-severity crashes. An analysis of frontal crashes in the University of Michigan Crash Injury Research and Engineering Network (UM CIREN) database was performed to determine the influence of vehicle, crash and occupant parameters on knee, thigh, and hip injuries. The data sample consists of drivers and right front passengers involved in frontal crashes who sustained significant injuries (Abbreviated Injury Scale [AIS] ≥ 3 or two or more AIS ≥ 2) to any body region.
Technical Paper

Development of an Improved Driver Eye Position Model

1998-02-23
980012
SAE Recommended Practice J941 describes the eyellipse, a statistical representation of driver eye locations, that is used to facilitate design decisions regarding vehicle interiors, including the display locations, mirror placement, and headspace requirements. Eye-position data collected recently at University of Michigan Transportation Research Institute (UMTRI) suggest that the SAE J941 practice could be improved. SAE J941 currently uses the SgRP location, seat-track travel (L23), and design seatback angle (L40) as inputs to the eyellipse model. However, UMTRI data show that the characteristics of empirical eyellipses can be predicted more accurately using seat height, steering-wheel position, and seat-track rise. A series of UMTRI studies collected eye-location data from groups of 50 to 120 drivers with statures spanning over 97 percent of the U.S. population. Data were collected in thirty-three vehicles that represent a wide range of vehicle geometry.
X