Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

PMHS Impact Response in 3 m/s and 8 m/s Nearside Impacts with Abdomen Offset

2013-11-11
2013-22-0015
Lateral impact tests were performed using seven male post-mortem human subjects (PMHS) to characterize the force-deflection response of contacted body regions, including the lower abdomen. All tests were performed using a dual-sled, side-impact test facility. A segmented impactor was mounted on a sled that was pneumatically accelerated into a second, initially stationary sled on which a subject was seated facing perpendicular to the direction of impact. Positions of impactor segments were adjusted for each subject so that forces applied to different anatomic regions, including thorax, abdomen, greater trochanter, iliac wing, and thigh, could be independently measured on each PMHS. The impactor contact surfaces were located in the same vertical plane, except that the abdomen plate was offset 5.1 cm towards the subject.
Technical Paper

A Method for Documenting Locations of Rib Fractures for Occupants in Real-World Crashes Using Medical Computed Tomography (CT) Scans

2006-04-03
2006-01-0250
A method has been developed to identify and document the locations of rib fractures from two-dimensional CT images obtained from occupants of crashes investigated in the Crash Injury Research Engineering Network (CIREN). The location of each rib fracture includes the vertical location by rib number (1 through 12), the lateral location by side of the thorax (inboard and outboard), and the circumferential location by five 36-degree segments relative to the sternum and spine. The latter include anterior, anterior-lateral, lateral, posterior-lateral, and posterior regions. 3D reconstructed images of the whole ribcage created from the 2D CT images using Voxar software are used to help identify fractures and their rib number. A geometric method for consistently locating each fracture circumferentially is described.
Technical Paper

New Concepts in Vehicle Interior Design Using ASPECT

1999-03-01
1999-01-0967
The ASPECT (Automotive Seat and Package Evaluation and Comparison Tools) program developed a new physical manikin for seat measurement and new techniques for integrating the seat measurements into the vehicle design process. This paper presents an overview of new concepts in vehicle interior design that have resulted from the ASPECT program and other studies of vehicle occupant posture and position conducted at UMTRI. The new methods result from an integration of revised versions of the SAE seat position and eyellipse models with the new tools developed in ASPECT. Measures of seat and vehicle interior geometry are input to statistical posture and position prediction tools that can be applied to any specified user population or individual occupant anthropometry.
Technical Paper

Directional Dynamics Considerations for Multi-Articulated, Multi-Axled Heavy Vehicles

1989-11-01
892499
Directional performance characteristics of heavy truck combinations are reviewed with respect to the influences of multiple axles and articulation points. The performance characteristics considered include steady turning, directional stability, and forced responses in obstacle avoidance maneuvers. The review provides useful insights to engineers interested in the handling and safety qualities of these types of vehicles.
Technical Paper

Car Crashes and Non-Head Impact Cervical Spine Injuries in Infants and Children

1992-02-01
920562
The effects of child safety seats have been well documented in the medical literature. Scattered throughout the medical literature are individual case reports of cervical injury to children restrained in child restraint systems. A review of the literature is provided identifying previous documented cases. The authors also provide new case details of children with cervical spine injury without head contact. An overview of the growth of the infant and specific details in the cervical spine that may contribute to significant cervical injury without head impact is presented.
Technical Paper

Non-Head Impact Cervical Spine Injuries in Frontal Car Crashes to Lap-Shoulder Belted Occupants

1992-02-01
920560
Crash injury reduction via lap-shoulder belt use has been well documented. As any interior car component, lap-shoulder belts may be related to injury in certain crashes. Relatively unknown is the fact that cervical fractures or fracture-dislocations to restrained front seat occupants where, in the crash, no head contact was evidenced by both medical records and car inspection. An extensive review of the available world's literature on car crash injuries revealed more than 100 such cases. A review of the NASS 80-88 was also conducted, revealing more examples. Cases from the author's own files are also detailed.
Technical Paper

Some Effects of Lumbar Support Contour on Driver Seated Posture

1995-02-01
950141
An appropriately contoured lumbar support is widely regarded as an essential component of a comfortable auto seat. A frequently stated objective for a lumbar support is to maintain the sitter's lumbar spine in a slightly extended, or lordotic, posture. Although sitters have been observed to sit with substantial lordosis in some short-duration testing, long-term postural interaction with a lumbar support has not been documented quantitatively in the automotive environment. A laboratory study was conducted to investigate driver posture with three seatback contours. Subjects† from four anthropometric groups operated an interactive laboratory driving simulator for one-hour trials. Posture data were collected by means of a sonic digitizing system. The data identify driver-selected postures over time for three lumbar support contours. An increase of 25 mm in the lumbar support prominence from a flat contour did not substantially change lumbar spine posture.
X