Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Technical Paper

Lower Extremity Injuries in Frontal Crashes: Injuries, Locations, AIS and Contacts

1991-02-01
910811
Frontal crashes (11-1 o'clock) were reviewed from the National Accident Severity Study file (NASS) for years 1980-87. Adult drivers and front right passengers, with lower extremity injuries of the pelvis, thigh, knee, leg or ankle/foot were reviewed. Analysis of age differences, injury contacts, and effectiveness of the 3-point restraint system were studied. Unrestrained drivers have a higher frequency of knee injuries than passengers, fewer leg injuries than passengers and both have the same frequency of ankle/foot injuries. Older unbelted drivers have more injuries to the pelvis, leg, and ankle/foot region than do young drivers. Passengers have more leg injuries. The instrument panel is the major contact for most of the lower extremity injuries. Lap/shoulder belts significantly reduce lower extremity injury frequency.
Technical Paper

Modeling Vehicle Ingress and Egress Using the Human Motion Simulation Framework

2008-06-17
2008-01-1896
The ease of getting into and out of passenger cars and light trucks is a critical component of customer acceptance and product differentiation. In commercial vehicles, the health and safety of drivers is affected by the design of the steps and handholds they use to get into and out of the cab. Ingress/egress assessment appears to represent a substantial application opportunity for digital human models. The complexity of the design space and the range of possible biomechanical and subjective measures of interest mean that developing useful empirical models is difficult, requiring large-scale subject testing with physical mockups. Yet, ingress and egress motions are complex and strongly affected by the geometric constraints and driver attributes, posing substantial challenges in creating meaningful simulations using figure models.
Technical Paper

Analysis of Truck-Light Vehicle Crash Data for Truck Aggressivity Reduction

2001-11-12
2001-01-2726
The National Highway Traffic Safety Administration and the University of Michigan Transportation Institute are investigating truck design countermeasures to provide safety benefits during collisions with light vehicles. The goal is to identify approaches that would best balance costs and benefits. This paper outlines the first phase of this study, an analysis of two-vehicle, truck/light vehicle crashes from 1996 through 1998 using several crash data bases to obtain a current description and determine the scope of the aggressivity problem. Truck fronts account for 60% of light vehicle fatalities in collisions with trucks. Collision with the front of a truck carries the highest probability of fatal (K) or incapacitating (A) injury. Truck sides account for about the same number of K and A-injuries combined as truck fronts, though injury probability is substantially lower than in crashes involving the front of a truck.
Technical Paper

Methods for In-Vehicle Measurement of Truck Driver Postures

2001-11-12
2001-01-2821
Effective application of human figure models to truck interior design requires accurate data on the postures and positions of truck drivers. Errors in positioning of figure models propagate to errors in reach, visibility, and other analyses. This paper describes methods used in a recent study to measure in-vehicle driving postures in Class 6, 7, and 8 trucks. A three-dimensional coordinate measurement machine was used to measure body landmark locations after a driver completed a short road course. The data were used to validate posture-prediction models developed in a previous laboratory study. Vehicle calibration, driver selection, and testing methods are reviewed.
Technical Paper

Considering Driver Balance Capability in Truck Shifter Design

2006-07-04
2006-01-2360
A person's ability to perform a task is often limited by their ability to maintain balance. This is particularly true in lateral work performed in seated environments. For a truck driver operating the shift lever of a manual transmission, excessive shift forces can necessitate pulling on the steering wheel with the other hand to maintain balance, creating a potentially unsafe condition. An analysis of posture and balance in truck shifter operation was conducted using balance limits to define the acceptable range of shifter locations. The results are dependent on initial driver position, reach postures, and shoulder strength. The effects of shifter force direction and magnitude were explored to demonstrate the application of the analysis method. This methodology can readily be applied to other problems involving hand-force exertions in seated environments.
Technical Paper

Characterizing the Road-Damaging Dynamics of Truck Tandem Suspensions

1993-11-01
932994
The road damage caused by heavy trucks is accentuated by the dynamic loads excited by roughness in the road. Simulation models of trucks are used to predict dynamic wheel loads, but special models are required for tandem suspensions. Parameter values to characterize tandem suspension systems can be measured quasi-statically on a suspension measurement facility, but it is not known how well they fit dynamic models. The dynamic behavior of leaf-spring and air-spring tandem suspensions were measured on a hydraulic road simulator using remote parameter characterization techniques. The road simulator tests were duplicated with computer simulations of these suspensions based on quasi-static parameter measurements to compare dynamic load performance. In the case of the walking-beam suspension, simulated performance on the road was compared to experimental test data to evaluate the ability of the walking-beam model to predict dynamic load.
Technical Paper

Repeatability of the Tilt-Table Test Method

1993-03-01
930832
Tilt-table testing is one means of quantifying the static roll stability of highway vehicles. By this technique, a test vehicle is subjected to a physical situation analogous to that experienced in a steady state turn. Although the analogy is not perfect, the simplicity and fidelity of the method make it an attractive means for estimating static rollover threshold. The NHTSA has suggested the tilt-table method as one means of regulating the roll stability properties of light trucks and utility vehicles. One consideration in evaluating the suitability of any test method for regulatory use is repeatability, both within and among testing facilities. As a first step toward evaluating the repeatability of the tilt-table method, an experimental study examining the sensitivity of tilt-table test results to variables associated with methodology and facility was conducted by UMTRI for the Motor Vehicle Manufacturers Association. This paper reports some of the findings of that study.
Technical Paper

Knee, Thigh and Hip Injury Patterns for Drivers and Right Front Passengers in Frontal Impacts

2003-03-03
2003-01-0164
Late model passenger cars and light trucks incorporate occupant protection systems with airbags and knee restraints. Knee restraints have been designed principally to meet the unbelted portions of FMVSS 208 that require femur load limits of 10-kN to be met in barrier crashes up to 30 mph, +/- 30 degrees utilizing the 50% male Anthropomorphic Test Device (ATD). In addition, knee restraints provide additional lower-torso restraint for belt-restrained occupants in higher-severity crashes. An analysis of frontal crashes in the University of Michigan Crash Injury Research and Engineering Network (UM CIREN) database was performed to determine the influence of vehicle, crash and occupant parameters on knee, thigh, and hip injuries. The data sample consists of drivers and right front passengers involved in frontal crashes who sustained significant injuries (Abbreviated Injury Scale [AIS] ≥ 3 or two or more AIS ≥ 2) to any body region.
Technical Paper

Modeling Assumptions for Realistic Multibody Simulations of the Yaw and Roll Behavior of Heavy Trucks

1996-02-01
960173
This paper summarizes how modem computer simulation methods have been used to develop a “fleet” of heavy truck simulation programs called TruckSim Kinematical and dynamical modeling assumptions appropriate for simulating the general three-dimensional behavior of heavy trucks are described to the extent needed to construct such a model in a multibody program such as the AUTOS1M symbolic code generator Alternative kinematical assumptions were tested and compared to determine their influence on the simulation efficiency and accuracy As part of the validation, simulation results for the new programs were compared with results obtained with an older program that was developed by hand
Technical Paper

Geometric Visibility of Mirror Mounted Turn Signals

2005-04-11
2005-01-0449
Turn signals mounted on exterior rearview mirrors are increasingly being used as original equipment on passenger cars and light trucks. The potential for mirror-mounted turn signals (MMTS) to improve the geometric visibility of turn signals is examined in this paper. A survey of U.S. and UN-ECE regulations showed that the turn signals of a vehicle that is minimally compliant with U.S. regulations are not visible to a driver of a nearby vehicle in an adjacent lane. Measurements of mirror location and window geometry were made on 74 passenger cars and light trucks, including 38 vehicles with fender-mounted turn signals (FMTS). These data were combined with data on driver eye locations from two previous studies to assess the relative visibility of MMTS and conventional signals. Simulations were conducted to examine the potential for signals to be obstructed when a driver looks laterally through the passenger-side window.
Technical Paper

Directional Dynamics Considerations for Multi-Articulated, Multi-Axled Heavy Vehicles

1989-11-01
892499
Directional performance characteristics of heavy truck combinations are reviewed with respect to the influences of multiple axles and articulation points. The performance characteristics considered include steady turning, directional stability, and forced responses in obstacle avoidance maneuvers. The review provides useful insights to engineers interested in the handling and safety qualities of these types of vehicles.
Technical Paper

Vehicle Design Implications of the Turner Proposal

1989-11-01
892461
The implications of restricting axle loads to preserve pavements while at the same time allowing gross combination weights over 80,000 pounds are examined with respect to the design qualities of the types of heavy trucks that might be developed. The proposed vehicles would have more axles than current designs thereby achieving higher gross combination weights with smaller axle loads. Design factors influencing mobility, productivity, preservation of the highway infrastructure, and performance in safety-related maneuvers are discussed.
Technical Paper

Safety Implications of Trucks Designed to Weigh Over 80,000 Pounds

1989-08-01
891632
A method is presented for checking vehicle designs to see if they will meet size and weight rules that may be applicable to vehicles weighing more than 80,000 lb. Then, examples of heavy trucks that have been designed to be productive are used in illustrating analytical evaluations of measures of performance in safety-related maneuvering situations. The paper concludes with the point of view that trucks over 80,000 lb could have design attributes that would allow these heavier vehicles to have levels of intrinsic safety exceeding or comparable to those of current trucks.
Technical Paper

Methods for Laboratory Investigation of Truck and Bus Driver Postures

2000-12-04
2000-01-3405
Few studies have systematically examined the effects of truck and bus workstation geometry on driver posture and position. This paper presents methods for determining drivers' postural responses and preferred component locations using a reconfigurable vehicle mockup. Body landmark locations recorded using a three-dimensional digitizer are used to compute a skeletal-linkage representation of the drivers' posture. A sequential adjustment procedure is used to determine the preferred positions and orientations of key components, including the seat, steering wheel, and pedals. Data gathered using these methods will be used to create new design tools for trucks and buses, including models of driver-selected seat position, eye location, and needed component adjustment ranges. The results will also be used to create accurate posture-prediction models for use with human modeling software.
Technical Paper

Computer Synthesis of Light Truck Ride Using a PC Based Simulation Program

1999-05-17
1999-01-1796
An easy-to-use computer program for ride analysis was recently developed. The result of this effort-RideSim- predicts time history responses, power spectral density (PSD) functions, and a driver oriented measure of ride comfort. RideSim employs a graphical user interface (called SGUI, for simulation graphical user interface) to control data preparation, simulation execution, animation, and data analysis. The SGUI allows the user to operate the program by pointing and clicking with a mouse, rather than by using cumbersome text commands. It also manages the vehicle dynamics parameters, the resulting simulation output, and results of post-processing analyses (i.e., PSD analysis). The vehicle dynamics model was generated with the AUTOSIM multibody dynamics program. This program uses Kane’s Method and computer algebra to create a parametric dynamics simulation that can be easily linked to the SGUI.
Technical Paper

Underride in Fatal Rear-End Truck Crashes

2000-12-04
2000-01-3521
For the 1997 data year, UMTRI's Center for National Truck Statistics collected data on rear underride as part of its Trucks Involved in Fatal Accidents (TIFA) survey. Data collected included whether the truck had a rear underride guard, whether the striking vehicle underrode the truck, and how much underride occurred. A primary goal was to evaluate rear underride of straight trucks. Overall, 453 medium and heavy trucks were struck in the rear by a nontruck vehicle in a fatal crash in 1997. Some underride occurred in at least 272 (60.0%) of the rear-end crashes. For straight trucks, there was some underride in 77 (52.0%) of the crashes, no underride occurred in 43 (29.1%) of the fatal rear-end crashes, and underride could not be determined in the remaining 28 (18.9%) straight truck rear-end crashes. Despite the fact that three-fourths of tractor combinations had an underride guard on the trailer, underride was more common for tractor combinations.
Technical Paper

The Tolerance of the Human Hip to Dynamic Knee Loading

2002-11-11
2002-22-0011
Based on an analysis of the National Automotive Sampling System (NASS) database from calendar years 1995-2000, over 30,000 fractures and dislocations of the knee-thigh-hip (KTH) complex occur in frontal motor-vehicle crashes each year in the United States. This analysis also shows that the risk of hip injury is generally higher than the risks of knee and thigh injuries in frontal crashes, that hip injuries are occurring to adult occupants of all ages, and that most hip injuries occur at crash severities that are equal to, or less than, those used in FMVSS 208 and NCAP testing. Because previous biomechanical research produced mostly knee or distal femur injuries, and because knee and femur injuries were frequently documented in early crash investigation data, the femur has traditionally been viewed as the weakest part of the KTH complex.
Technical Paper

A Method for Measuring the Field of View in Vehicle Mirrors

2003-03-03
2003-01-0297
A new method is presented for physically measuring drivers' field of view in rearview mirrors. A portable coordinate measurement apparatus (FARO Arm) is used to measure the mirror locations, contours, and curvature. Measurements of the driver's head and eye locations while looking into each mirror are also made. Raytracing is used to map the two- or three-dimensional field of view in each mirror. The method differentiates between monocular, binocular, and ambinocular fields of view, and can account for head movements. This method has been applied to passenger cars, light trucks, and heavy trucks to document how drivers aim their mirrors during normal use.
Technical Paper

Roll-Stability Performance of Heavy-Vehicle Suspensions

1992-11-01
922426
The handling-performance capability of most large commercial vehicles operating on US highways is generally established by the limits of roll stability. Especially for heavy trucks, suspension properties play an important role in establishing the basic roll stability of the vehicle. For all highway vehicles, the limit of static roll stability is established first by the ratio of half-track width to center-of-gravity height, and then by the compliant responses of the vehicle, which lead to outward motion of the center of gravity in a turn. Three suspension properties, roll stiffness, roll-center height, and lateral stiffness, influence this motion significantly. This paper discusses the basic mechanisms of static roll stability and highlights the role of suspension properties in establishing the roll-stability limit. Facilities and procedures for measuring key suspension properties are described, and data from the measurement of ninty-four heavy-vehicle suspensions are presented.
X