Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Prediction and Experimental Validation of Path-Dependent Forming Limit Diagrams of VDIF Steel

Strains in most stamped parts are produced under non-proportional loading. Limit strains induced during forming are, therefore, path dependent. Experimental Forming Limit Diagrams (FLDs) are usually determined under proportional loading and are not applicable to most forming operations. Experimental results have shown that path dependent FLDs are different from those determined under proportional loading. A number of analytical methods have been used to predict FLDs under proportional loading. The authors have recently introduced a new method for predicting FLDs based on the theory of damage mechanics. The damage model was used successfully to predict proportional FLDs for VDIF steel and Al6111-T4. In this paper, the anisotropic damage model was used to predict non-proportional FLDs for VDIF steel. Experiments were conducted to validate model predictions by applying pre-stretch in plane strain followed by uniaxial and balanced biaxial tension.
Technical Paper

Synchronous Motor with Silicon Steel Salient Poles Rotor and All Coils Placed on the Stator

In this paper, we consider a new design of synchronous motor with salient poles rotor and all coils placed on the stator. This design, uses a laminated silicon steel rotor, which is not so expensive as a rotor with super strong permanent magnets. This design of machine eliminates copper rings on the rotor and brushes which is used in regular synchronous motors, and eliminates disadvantages involved with these arrangements. In an earlier publication, authors considered the opportunity realization of synchronous mode operation in the machine with salient pole rotor and DC stator excitation. Now, we consider the new synchronous mode operation with individual DC excitation of each the alternative current (AC) windings for realization the first, second and third phase synchronous machines. In theoretical basics of analyses and design of synchronous motors we pay more attention to the single-phase motor because it is the basis for design polyphase synchronous machines.
Technical Paper

Application of Fatigue Life Prediction Methods for GMAW Joints in Vehicle Structures and Frames

In the North American automotive industry, various advanced high strength steels (AHSS) are used to lighten vehicle structures, improve safety performance and fuel economy, and reduce harmful emissions. Relatively thick gages of AHSS are commonly joined to conventional high strength steels and/or mild steels using Gas Metal Arc Welding (GMAW) in the current generation body-in-white structures. Additionally, fatigue failures are most likely to occur at joints subjected to a variety of different loadings. It is therefore critical that automotive engineers need to understand the fatigue characteristics of welded joints. The Sheet Steel Fatigue Committee of the Auto/Steel Partnership (A/S-P) completed a comprehensive fatigue study on GMAW joints of both AHSS and conventional sheet steels including: DP590 GA, SAE 1008, HSLA HR 420, DP 600 HR, Boron, DQSK, TRIP 780 GI, and DP780 GI steels.
Technical Paper

The Multiobjective Optimal Design Problems and their Pareto Optimal Fronts for Li-Ion Battery Cells

This paper begins with a baseline multi-objective optimization problem for the lithium-ion battery cell. Maximizing the energy per unit separator area and minimizing the mass per unit separator area are considered as the objectives when the thickness and the porosity of the positive electrode are chosen as design variables in the baseline problem. By employing a reaction zone model of a Graphite/Iron Phosphate Lithium-ion Cell and the Genetic Algorithm, it is shown the shape of the Pareto optimal front for the formulated optimization takes a convex form. The identified shape of the Pareto optimal front is expected to guide Design of Experiments (DOE) and product design. Compared with the conventional studies whose optimizations are based on a single objective of maximizing the specific energy, the proposed multi-objective optimization approach offers more flexibility to the product designers when trade-off between conflicting objectives is required.
Technical Paper

Formability of Aluminum Tailor-Welded Blanks

The use of tailor welded blanks (TWBs) in automotive applications is increasing due to the potential of weight and cost savings. These blanks are manufactured by joining two or more sheets of dissimilar gauge, properties, or both, to form a lighter blank of desired strength and stiffness. This allows an engineer to “tailor” the properties of the blank to meet the design requirements of a particular panel. TWBs are used in such places as door inner panels, lift gates, and floor pans. Earlier investigations of the use of TWBs targeted steel alloys, but the potential of further weight savings with aluminum TWBs is gaining interest in the automotive industry. Unlike steel TWBs, the welds in aluminum TWBs are not significantly stronger than the base material and are occasionally the fracture site. Additionally, the reduced formability of aluminum, as compared with drawing-quality steels, makes the application of aluminum TWBs more difficult than steel TWBs.
Technical Paper

Prestrain Effect on Fatigue of DP600 Sheet Steel

The component being formed experiences some type of prestrain that may have an effect on its fatigue strength. This study investigated the forming effects on material fatigue strength of dual phase sheet steel (DP600) subjected to various uniaxial prestrains. In the as-received condition, DP600 specimens were tested for tensile properties to determine the prestraining level based on the uniform elongation corresponding to the maximum strength of DP600 on the stress-strain curve. Three different levels of prestrain at 90%, 70% and 50% of the uniform elongation were applied to uniaxial prestrain specimens for tensile tests and fatigue tests. Fatigue tests were conducted with strain controlled to obtain fatigue properties and compare them with the as-received DP600. The fatigue test results were presented with strain amplitude and Neuber's factor.
Technical Paper

Cost-Benefit Analysis of Thermoplastic Matrix Composites for Structural Automotive Applications

This paper presents cost-benefit analysis of glass and carbon fiber reinforced thermoplastic matrix composites for structural automotive applications based on press forming operation. Press forming is very similar to stamping operation for steel. The structural automotive applications involve beam type components. The part selected for a case study analysis is a crossbeam support for instrument panels.
Journal Article

Effect of Temperature Variation on Stresses in Adhesive Joints between Magnesium and Steel

This study considers the thermal stresses in single lap adhesive joints between magnesium and steel. The source of thermal stresses is the large difference in the coefficients of thermal expansion of magnesium and steel. Two different temperature differentials from the ambient conditions (23°C) were considered, namely -30°C and +50°C. Thermal stresses were determined using finite element analysis. In addition to Mg-steel substrate combination, Mg-Mg and steel-steel combinations were also studied. Combined effect of temperature variation and applied load was also explored. It was observed that temperature increase or decrease can cause significant thermal stresses in the adhesive layer and thermal stress distribution in the adhesive layer depends on the substrate combination and the applied load.
Journal Article

Modeling Forming Limit in Low Stress Triaxiality and Predicting Stretching Failure in Draw Simulation by an Improved Ductile Failure Criterion

A ductile failure criterion (DFC), which defines the stretching failure at localized necking (LN) and treats the critical damage as a function of strain path and initial sheet thickness, was proposed in a previous study. In this study, the DFC is revisited to extend the model to the low stress triaxiality domain and demonstrates on modeling forming limit curve (FLC) of TRIP 690. Then, the model is used to predict stretching failure in a finite element method (FEM) simulation on a TRIP 690 steel rectangular cup draw process at room temperature. Comparison shows that the results from this criterion match quite well with experimental observations.
Journal Article

Analysis of Trimming Processes for Advanced High Strength Steels

Current die design recommendations attempt to limit the production of burrs through accurate alignment of the upper and lower edges. For common automotive exterior sheet, this translates to a gap less than 0.06mm. Unfortunately, the tolerances required by such standards often exceed the capabilities of many trim dies. The objective of the research described in this paper is to study the mechanisms of burrs generation and their impact on AHSS formability in stretch flanging. Experimental results on influence of trimming conditions on the shape of the sheared surface will be combined with the results of stretching strips after trimming.