Refine Your Search

Topic

Search Results

Technical Paper

Geometric optimization of Nozzles for Inclined Injectors for DI Diesel Engines

1996-02-01
960868
Low emission heavy-duty diesel engines are increasingly utilizing four-valve designs with vertical central injectors. However, two-valve DI diesel engines with inclined injectors offset from the centerline of the piston bowl are likely to continue to be used in medium and light duty applications for some time. In such situations, designing of the hole-type nozzle is very difficult and may cause unavoidable back-drilling problems. The purpose of this paper is to solve back-drilling problems connected with hole-type nozzles and improve fuel-air mixing which leads to more efficient combustion. Based on geometric considerations, this paper introduces single-cone hole-type nozzles, double-cone hole-type nozzles, and the critical principal angles for hole-type nozzles. The single-cone hole-type nozzles and double-cone hole-type nozzles can meet requirements for height of the spray impingement points and spray orifice distribution angle at the same time.
Technical Paper

A Bimodal Loading Test for Engine and General Purpose Air Cleaning Filters

1997-02-24
970674
The dust holding capacity of air cleaning filter depends on the size distribution of the particles. Traditional test dusts like Arizona road dust consist of a single mode of coarse particles. The purpose of this study is to evaluate the dust holding capacities of air filters with a bi-modal test dust that simulates the dust in atmospheric environments. The fine mode of the test dust consists of submicron Alumina particles that represent the fine particles in atmosphere. The coarse mode consists of traditional AC fine dust. The fine and coarse dusts are mixed in different mass ratios to simulate different atmospheric conditions. The ratios are 100% fine, 50%/50%, 25%/75%, 10%/90%, and 100% coarse. An engine air filter and a HVAC filter were studied with the bi-modal test dusts. The filter pressure drops were measured as a function of the dust loading. The results show that the flow resistance rises significantly faster as the ratio of fine to coarse fraction increases.
Technical Paper

Experimental Measurement of Clean Fractional Efficiency of Engine Air Cleaning Filters

1997-02-24
970675
The function of the engine air cleaning filter is to remove the particulate matter in the intake air to protect the engine and its components from wear and contamination. For a specific filter, the efficiency is a function of the size of the particles being collected and the air flow velocity through the filter. Traditional tests of engine air cleaners are based on the use of specific test dusts, such as the AC Coarse and AC Fine, to determine the mass collection efficiency. However, they do not provide information on the size dependent performance of the filters, and the variation in filter performance under different particle challenge conditions. The use of a fractional efficiency test method will help to provide this missing information. The purpose of this paper is to describe a fractional efficiency test system that has been designed to evaluate the fractional cleaning efficiency of engine air cleaning filters in the size range between 0.3 and 10 mm particle diameter.
Technical Paper

Dust Loading Behavior of Engine and General Purpose Air Cleaning Filters

1997-02-24
970676
The purpose of this study is to compare the dust loading behavior of ten filter media. The filters are used in engine air filtration, self-cleaning industrial air cleaners, building heating ventilation and cooling (HVAC), automotive cabin air filtration, air respirators, and general purpose air cleaning. Several types of filter media are tested. The filters include cellulose, synthetic (felt), glass, dual-layered glass/cellulose, mixed synthetic/glass, gradient packing glass, and electrically charged fibers. The initial pressure drops and fractional collection efficiencies as a function of particle size are reported. The filters were evaluated with two test dusts to investigate the size-dependent dust loading behavior. The two test dusts are SAE fine and submicron alumina powder (median diameter 0.25 μm). The results are analyzed and compared. It was found that the cellulose filters exhibited surface loading behavior and have the fastest growth of pressure drops.
Technical Paper

Diesel Trap Performance: Particle Size Measurements and Trends

1998-10-19
982599
Particle concentrations and size distributions were measured in the exhaust of a turbocharged, aftercooled, direct-injection, Diesel engine equipped with a ceramic filter (trap). Measurements were performed both upstream and downstream of the filter using a two-stage, variable residence time, micro-dilution system, a condensation particle counter and a scanning mobility particle sizer set up to count and size particles in the 7-320 nm diameter range. Engine operating conditions of the ISO 11 Mode test were used. The engine out (upstream of filter) size distribution has a bimodal, log normal structure, consisting of a nuclei mode with a geometric number mean diameter, DGN, in the 10-30 nm range and an accumulation mode with DGN in the 50-80 nm range. The modal structure of the size distribution is less distinct downstream of the filter. Nearly all the particle number emissions come from the nuclei mode, are nanoparticles (Dp < 50nm), and are volatile.
Technical Paper

Real Time Measurement of Volatile and Solid Exhaust Particles Using a Catalytic Stripper

1995-02-01
950236
A system has been developed that allows near real time measurements of total, volatile, and nonvolatile particle concentrations in engine exhaust. It consists of a short section of heated catalyst, a cooling coil, and an electrical aerosol analyzer. The performance of this catalytic stripper system has been characterized with nonvolatile (NaCl), volatile sulfate ((NH4)2 SO4), and volatile hydrocarbon (engine oil) particles with diameters ranging from 0.05-0.5 μm. The operating temperature of 300°C gives essentially complete removal of volatile sulfate and hydrocarbon particles, but also leads to removal of 15-25% of solid particles. This system has been used to determine total, volatile, and nonvolatile particle concentrations in the exhaust of a Diesel engine and a spark ignition engine. Volatile volume fractions measured in Diesel exhaust with the catalytic stripper system increased from 19-65% as the equivalence ratio (load) decreased from 0.64-0.13.
Technical Paper

Influence of a Fuel Additive on the Performance and Emissions of a Medium-Duty Diesel Engine

1994-03-01
941015
This report describes tests of a fuel additive in a medium-duty, high-swirl, direct-injection diesel engine. The additive was found to have little influence on general combustion performance or on NOx emissions. On the other hand, it had a profound effect on particulate emissions. This was most clear under high load where particle emissions are highest. Here, when the engine was switched from running on the base fuel to the additive treated fuel, particle emissions at first increased and then fell to levels about 40% lower (by particle volume) than those initially produced by the base fuel. The additive had a long lasting effect. After running with the additive for about 25 hours, emission levels with the base fuel were only slightly higher than those with the additive treated fuel. We believe that the additive action is associated with a combination of cleaning and surface conditioning. More work should be done to understand the relative importance of these two mechanisms.
Technical Paper

Transient Particulate Emissions from Diesel Buses During the Central Business District Cycle

1996-02-01
960251
Particulate emissions from heavy-duty buses were measured in real time under conditions encountered during the standard Central Business District (CBD) driving cycle. The buses tested were equipped with 1994 Detroit Diesel Engine Corporation 6V92-TA engines, and some included after treatment devices on the exhaust. Instantaneous, time-resolved measurements of CO2 and amorphous carbon concentrations were obtained using an optical extinction technique and compared to simultaneous results obtained using conventional dilution tunnel sampling methods. Good agreement was obtained between the real-time extinction measurements and the diluted CO2 and cycle-integrated filter measurements. The instantaneous measurements revealed that acceleration transients accounted for roughly 80% of the particulate mass emitted during the cycle but only about 45% of the fuel consumption.
Technical Paper

Spark Ignition Engine Knock Detection Using In-Cylinder Optical Probes

1996-10-01
962103
Two types of in-cylinder optical probes were applied to a single cylinder CFR engine to detect knocking combustion. The first probe was integrated directly into the engine spark plug to monitor the radiation from burned gas in the combustion process. The second was built into a steel body and installed near the end gas region of the combustion chamber. It measured the radiant emission from the end gas in which knock originates. The measurements were centered in the near infrared region because thermal radiation from the combustion products was believed to be the main source of radiation from a spark ignition engine. As a result, ordinary photo detectors can be applied to the system to reduce its cost and complexity. It was found that the measured luminous intensity was strongly dependent upon the location of the optical sensor.
Technical Paper

Three-Dimensional Modeling of Soot and NO in a Direct-injection Diesel Engine

1995-02-01
950608
Results of comparisons of computed and measured soot and NO in a direct-injection Diesel engine are presented. The computations are carried out using a three-dimensional model for flows, sprays and combustion in Diesel engines. Autoignition of the Diesel spray is modeled using an equation for a progress variable which measures the local and instantaneous tendency of the fuel to autoignite. High temperature chemistry is modeled using a local chemical equilibrium model coupled to a combination of laminar kinetic and turbulent characteristic times. Soot formation is kinetically controlled and soot oxidation is represented by a model which has a combination of laminar kinetic and turbulent mixing times. Soot oxidation appears to be controlled near top-dead-center by mixing and by kinetics as the exhaust is approached. NO is modeled using the Zeldovich mechanism.
Technical Paper

Modeling of Diesel Sprays in a Very High Pressure Chamber, Part II: Effects of Combustion

1995-02-01
950603
Results of two- and three-dimensional computations of combustion of Diesel sprays in a very high-pressure chamber are presented. A wide range of experimental conditions are considered. Peak chamber pressure with combustion range from about 6.0 MPa to about 20 MPa. Computed and measured spray penetrations and chamber pressures are compared and shown to be in adequate agreement. Autoignition is modeled using an equation for a progress variable which measures the local and instantaneous tendency of the fuel to autoignite. High temperature chemistry is modeled using a local equilibrium model coupled to a combination of laminar and turbulent characteristic times. It is shown that scaling rules which were found to apply in vaporizing and non-vaporizing sprays also apply in the combusting sprays. The fuel-air mixing rates and burning rates increase as the ratio of the ambient density to injected density increases.
Technical Paper

Three-Dimensional Computations of Diesel Sprays in a Very High Pressure Chamber

1994-10-01
941896
Results of three-dimensional computations of non-vaporizing and vaporizing Diesel sprays in a very high pressure (up to 18.4 MPa without combustion) environment are presented. These pressures and corresponding density ratios of ambient gas to injected liquid are about a factor of two greater than those in current Diesel engines. The spray model incorporates a line source for drops, heat, mass and momentum exchange between the gas and liquid phases, turbulent dispersion of drops, collisions and coalescences, and drop breakup. The accuracy of the model is assessed by making comparisons of computed and measured spray penetrations. Reasonable agreement is obtained for a broad range of conditions. A scaling for time and axial distance clarifies these results.
Technical Paper

Diesel Exhaust Particle Size: Measurement Issues and Trends

1998-02-23
980525
Exhaust particle number concentrations and size distributions were measured from the exhaust of a 1995 direct injection, Diesel engine. Number concentrations ranged from 1 to 7.5×107 particles/cm3. The number size distributions were bimodal and log-normal in form with a nuclei mode in the 7-15 nm diameter range and an accumulation mode in the 30-40 nm range. For nearly all operating conditions, more than 50% of the particle number, but less than 1% of the particle mass were found in the nuclei mode. Preliminary indications are that the nuclei mode particles are solid and formed from volatilization and subsequent nucleation of metallic ash from lubricating oil additives. Modern low emission engines produce low concentrations of soot agglomerates. The absence of these agglomerates to act as sites for adsorption or condensation of volatile materials makes nucleation and high number emissions more likely.
Technical Paper

Characterization of Exhaust Particulate Emissions from a Spark Ignition Engine

1998-02-23
980528
Exhaust particulate emissions from a 4-cylinder, 2.25 liter spark ignition engine were measured and characterized. A single-stage ejector-diluter system was used to dilute and cool the exhaust sample for measurement. The particulate measurement equipment included a condensation nucleus counter and a scanning mobility particle sizer. Exhaust measurements were made both upstream and downstream of the catalytic converter using three different fuels. Unlike particulate emissions in diesel engines, spark ignition exhaust particle emissions were found to be highly unstable. Typically, a stable “baseline” concentration on the order of 105 particles/cm3 is emitted. Occasionally, however, a “spike” in the exhaust particle concentration is observed. The exhaust particle concentrations observed during these spikes can increase by as much as two orders of magnitude over the baseline concentration.
Technical Paper

Influence of an Iron Fuel Additive on Diesel Combustion

1998-02-23
980536
This program used a 0.6 liter DI NA single cylinder diesel engine to study the influence of ferrocene as a fuel additive on particulate and NOx emissions and heat release rates. Previous Studies1,15 have shown efficiency and particulate emission benefits only after engine conditioning. Two engine configurations were tested: standard aluminum piston with normal engine deposits and a second test with the engine cleaned to “new engine condition”, but with the piston replaced with a thermal barrier coated piston. Particle concentration and size in roughly the 7.5 to 750 nm diameter range were measured with a condensation nucleus counter and an electrical aerosol analyzer. Heat release rates and IMEPs were calculated from in-cylinder pressure data. Particle number concentrations increased substantially when the 250 ppm dose was first started with both engine configuration, but decreased 30% to 50% with conditioning.
Technical Paper

A PC-Based Fuel and Ignition Control System Used to Map the 3-D Surfaces of Torque and Emissions Versus Air-Fuel Ratio and Ignition Timing

1994-03-01
940546
A system was designed for controlling fuel injection and ignition timing for use on a port fuel injected, gas-fueled engine. Inputs required for the system include manifold absolute pressure, manifold air temperature, a once per revolution crankshaft pulse, a once per cycle camshaft pulse, and a relative encoder pulse train to determine crank angle. A prototype card installed in the computer contains counters and discrete logic which control the timing of ignition and injection events. High current drivers used to control the fuel injector solenoids and coil primary current are optically isolated from the computer by the use of fiber optic cables. The programming is done in QuickBASIC running in real time on a 25 MHz 80486 personal computer. The system was used to control a gas-fueled spark ignition engine at various conditions to map the torque versus air-fuel ratio and ignition timing. Each surface was mapped for a given fuel flow and speed.
Technical Paper

Synchronous, Simultaneous Optimization of Ignition Timing and Air-Fuel Ratio in a Gas-Fueled Spark Ignition Engine

1994-03-01
940547
A two-dimensional optimization process which simultaneously adjusts the spark timing and air-fuel ratio of a lean-burn natural gas fueled engine has been demonstrated. This has been done by first mapping the thermal efficiency against spark timing and equivalence ratio at a single speed and load combination to obtain the 3-D surface of efficiency versus the other two variables. Then the ability of the control system to find and hold the combination of timing and air-fuel ratio which gives the highest thermal efficiency was explored. The control system described in SAE Paper No. 940546 was used to map the thermal efficiency versus equivalence ratio and ignition timing. NOx, CO, and HC maps were also obtained to determine the tradeoffs between efficiency and emissions. A load corresponding to a brake mean effective pressure of 0.467 MPa was maintained by a water brake dynamometer. A speed of 2000 rpm was maintained by a fuel-controlled governor.
Technical Paper

Alternative Fuel Technologies for Heavy Duty Vehicles: Performance, Emissions, Economics, Safety, and Development Status

1993-03-01
930731
This paper summarizes the state-of-the-art of various alternative fuel technologies for heavy-duty transit applications and compares them to conventional and “ clean” diesel engines. Alternative powerplants considered include compressed natural gas (CNG), liquefied natural gas (LNG), methanol, ethanol, liquefied petroleum gas (LPG), hydrogen, and several electric technologies. The various technologies are ranked according to emissions, operating and capital costs, safety, development status, driveability, and long term fuel supply. A simple spreadsheet-based rating system is presented; it not only provides a versatile, semi-quantitative way to rank technologies using both quantitative and qualitative information, but also helps identify critical areas which limit implementation for a given application. An example is given for urban transit buses.
Technical Paper

Visualization of Entry Flow Separation for Oscillating Flow in Tubes

1992-08-03
929466
Results of visualization experiments are presented for the entry flow to circular tubes under oscillatory flow conditions. Geometries and conditions have been chosen to simulate the flow in a Stirling engine with straight heat exchanger tubes. Since oscillating flow in Stirling engines is unavoidably strongly influenced by the entry conditions, such documentation is useful when engine designs are being considered and is needed when test results are being interpreted. Two entry geometries are explored, one with unrestricted entry to a squared-edged tube and another with entry from one side. The visualization technique is by illumination of neutrally-buoyant, helium-filled soap bubbles with laser light, capturing with still photography. Each picture is an ensemble of exposures from 150 cycles. Each entry to the ensemble is taken at the same range in crank position, typically five degrees. Thus, one picture may visualize the flow from 75 to 80 degrees of crank rotation, for instance.
Technical Paper

An Ionization Probe Study of Small Engine Combustion Chambers

1976-02-01
760170
Combustion characteristics of an L-head engine combustion chamber have been examined using ionization probes and piezioelectric pressure transducers. The method describes how pressure rise rates, peak pressures, mean effective pressures, and flame arrival times were recorded. The flame arrival times were then used to find the position and shape of the flame front as a function of time. The influence of spark plug location on the above parameters was then examined for two different combustion chamber shapes.
X