Refine Your Search

Search Results

Viewing 1 to 11 of 11
Journal Article

Applying Design of Experiments to Determine the Effect of Gas Properties on In-Cylinder Heat Flux in a Motored SI Engine

Models for the convective heat transfer from the combustion gases to the walls inside a spark ignition engine are an important keystone in the simulation tools which are being developed to aid engine optimization. The existing models have, however, been cited to be inaccurate for hydrogen, one of the alternative fuels currently investigated. One possible explanation for this inaccuracy is that the models do not adequately capture the effect of the gas properties. These have never been varied in a wide range because air and ‘classical’ fossil fuels have similar values, but they are significantly different in the case of hydrogen. As a first step towards a fuel independent heat transfer model, we have investigated the effect of the gas properties on the heat flux in a spark ignition engine.
Technical Paper

Burn Rate and Instantaneous Heat Flux Study of Iso-octane, Toluene and Gasoline in a Spray-Guided Direct-Injection Spark-Ignition Engine

The burn rate and the instantaneous in-cylinder heat transfer have been studied experimentally in a spray-guided direct-injection spark-ignition engine with three different fuels: gasoline, iso-octane and toluene. The effects of the ignition timing, air fuel ratio, fuel injection timing and injection strategy (direct injection or port injection) on the burn rate and the in-cylinder heat transfer have been experimentally investigated at a standard mapping point (1500 rpm and 0.521 bar MAP) with the three different fuels. The burn rate analysis was deduced from the in-cylinder pressure measurement. A two-dimensional heat conduction model of the thermocouple was used to calculate the heat flux from the measured surface temperature. An engine thermodynamic simulation code was used to predict the gas-to-wall heat transfer.
Technical Paper

Demonstrating the Use of Thin Film Gauges for Heat Flux Measurements in ICEs: Measurements on an Inlet Valve in Motored Operation

To optimize internal combustion engines (ICEs), a good understanding of engine operation is essential. The heat transfer from the working gases to the combustion chamber walls plays an important role, not only for the performance, but also for the emissions of the engine. Besides, thermal management of ICEs is becoming more and more important as an additional tool for optimizing efficiency and emission aftertreatment. In contrast little is known about the convective heat transfer inside the combustion chamber due to the complexity of the working processes. Heat transfer measurements inside the combustion chamber pose a challenge in instrumentation due to the harsh environment. Additionally, the heat loss in a spark ignition (SI) engine shows a high temporal and spatial variation. This poses certain requirements on the heat flux sensor. In this paper we examine the heat transfer in a production SI ICE through the use of Thin Film Gauge (TFG) heat flux sensors.
Technical Paper

Analysis of Underhood Temperature Fields using Linear Superposition

The analysis of thermal fields in the underhood region is complicated by the complex geometry and the influence of a multitude of different heat sources. This complexity means that running full CFD analyses to predict the thermal field in this region is both computationally expensive and time consuming. A method of predicting the thermal field using linear superposition has been developed in order to analyse the underhood region of a simplified Formula One race car, though the technique is applicable to all vehicles. The use of linear superposition allows accurate predictions of the thermal field within a complex geometry for varying boundary conditions with negligible computational costs once the initial characterisation CFD has been run. A quarter scale, rear end model of a Formula One race car with a simplified internal assembly is considered for analysis, though the technique can also be applied to commercial and industrial vehicles.
Technical Paper

Studying the Effect of the Flame Passage on the Convective Heat Transfer in a S.I. Engine

Engine optimization requires a good understanding of the in-cylinder heat transfer since it affects the power output, engine efficiency and emissions of the engine. However little is known about the convective heat transfer inside the combustion chamber due to its complexity. To aid the understanding of the heat transfer phenomena in a Spark Ignition (SI) engine, accurate measurements of the local instantaneous heat flux are wanted. An improved understanding will lead to better heat transfer modelling, which will improve the accuracy of current simulation software. In this research, prototype thin film gauge (TFG) heat flux sensors are used to capture the transient in-cylinder heat flux within a Cooperative Fuel Research (CFR) engine. A two-zone temperature model is linked with the heat flux data. This allows the distinction between the convection coefficient in the unburned and burned zone.
Technical Paper

Temperature and Heat Flux Measurements in a Spark Ignition Engine

This paper has two parts. The first compares the measured burned gas temperature using Coherent Anti-Stokes Raman Scattering (CARS) with the predictions of a multiple zone computer simulation of combustion. The second part describes a system that is capable of determining the heat flux into the combustion chamber by means of measuring the chamber surface temperature. It is shown that the multi-zone computer simulation can accurately predict the burned gas temperature once the fuel burn rate has been analyzed and the model tuned correctly. The effect of different fuels (methane and iso-octane) on the burned gas temperature is reported. A high burn rate or more advanced ignition timing gave a lower burned gas temperature towards the end of the engine cycle. The surface heat flux was deduced from measurements of the surface temperature by using a finite difference method.
Technical Paper

Effect of Thermocouple Size on the Measurement of Exhaust Gas Temperature in Internal Combustion Engines

Accurate measurement of exhaust gas temperature in internal combustion engines is essential for a wide variety of monitoring and design purposes. Typically these measurements are made with thermocouples, which may vary in size from 0.05 mm (for fast response applications) to a few millimetres. In this work, the exhaust of a single cylinder diesel engine has been instrumented both with a fast-response probe (comprising of a 50.8 μm, 127 μm and a 254 μm thermocouple) and a standard 3 mm sheathed thermocouple in order to assess the performance of these sensors at two speed/load conditions. The experimental results show that the measured time-average exhaust temperature is dependent on the sensor size, with the smaller thermocouples indicating a lower average temperature for both speed/load conditions. Subject to operating conditions, measurement discrepancies of up to ~80 K have been observed between the different thermocouples used.
Technical Paper

Assessment of Empirical Heat Transfer Models for a CFR Engine Operated in HCCI Mode

Homogeneous charge compression ignition (HCCI) engines are a promising alternative to traditional spark- and compression-ignition engines, due to their high thermal efficiency and near-zero emissions of NOx and soot. Simulation software is an essential tool in the development and optimization of these engines. The heat transfer submodel used in simulation software has a large influence on the accuracy of the simulation results, due to its significant effect on the combustion. In this work several empirical heat transfer models are assessed on their ability to accurately predict the heat flux in a CFR engine during HCCI operation. Models are investigated that are developed for traditional spark- and compression-ignition engines such as those from Annand [1], Woschni [2] and Hohenberg [3] and also models developed for HCCI engines such as those from Chang et al. [4] and Hensel et al. [5].
Technical Paper

ICICLE: A Model for Glaciated & Mixed Phase Icing for Application to Aircraft Engines

High altitude ice crystals can pose a threat to aircraft engine compression and combustion systems. Cases of engine damage, surge and rollback have been recorded in recent years, believed due to ice crystals partially melting and accreting on static surfaces (stators, endwalls and ducting). The increased awareness and understanding of this phenomenon has resulted in the extension of icing certification requirements to include glaciated and mixed phase conditions. Developing semi-empirical models is a cost effective way of enabling certification, and providing simple design rules for next generation engines. A comprehensive ice crystal icing model is presented in this paper, the Ice Crystal Icing ComputationaL Environment (ICICLE). It is modular in design, comprising a baseline code consisting of an axisymmetric or 2D planar flowfield solution, Lagrangian particle tracking, air-particle heat transfer and phase change, and surface interactions (bouncing, fragmentation, sticking).
Technical Paper

Thermal Analysis of Steel and Aluminium Pistons for an HSDI Diesel Engine

Chromium-molybdenum alloy steel pistons, which have been used in commercial vehicle applications for some time, have more recently been proposed as a means of improving thermal efficiency in light-duty applications. This work reports a comparison of the effects of geometrically similar aluminium and steel pistons on the combustion characteristics and energy flows on a single cylinder high-speed direct injection diesel research engine tested at two speed / load conditions (1500 rpm / 6.9 bar nIMEP and 2000 rpm/25.8 bar nIMEP) both with and without EGR. The results indicate that changing to an alloy steel piston can provide a significant benefit in brake thermal efficiency at part-load and a reduced (but non-negligible) benefit at the high-load condition and also a reduction in fuel consumption. These benefits were attributed primarily to a reduction in friction losses.
Technical Paper

The Effect of an Active Thermal Coating on Efficiency and Emissions from a High Speed Direct Injection Diesel Engine

This study looked into the application of active thermal coatings on the surfaces of the combustion chamber as a method of improving the thermal efficiency of internal combustion engines. The active thermal coating was applied to a production aluminium piston and its performance was compared against a reference aluminium piston on a single-cylinder diesel engine. The two pistons were tested over a wide range of speed/load conditions and the effects of EGR and combustion phasing on engine performance and tailpipe emissions were also investigated. A detailed energy balance approach was employed to study the thermal behaviour of the active thermal coating. In general, improvements in indicated specific fuel consumption were not statistically significant for the coated piston over the whole test matrix. Mean exhaust temperature showed a marginal increase with the coated piston of up to 6 °C.