Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Discretization and Heat Transfer Calculation of Engine Water Jackets in 1D-Simulation

2020-04-14
2020-01-1349
The industry is working intensively on the precision of thermal management. By using complex thermal management strategies, it is possible to make engine heat distribution more accurate and dynamic, thereby increasing efficiency. Significant efforts are made to improve the cooling efficiency of the engine water jacket by using 3D CFD. As well, 1D simulation plays a significant role in the design and analysis of the cooling system, especially for considering transient behaviour of the engine. In this work, a practice-oriented universal method for creating a 1D water jacket model is presented. The focus is on the discretization strategy of 3D geometry and the calculation of heat transfer using Nusselt correlations. The basis and reference are 3D CFD simulations of the water jacket. Guidelines for the water jacket discretization are proposed. The heat transfer calculation in the 1D-templates is based on Nusselt-correlations (Nu = Nu(Re, Pr)), which are derived from 3D CFD simulations.
Journal Article

Some Useful Additions to Calculate the Wall Heat Losses in Real Cycle Simulations

2012-04-16
2012-01-0673
More than 20 years after the first presentation of the heat transfer equation according to Bargende [1,2], it is time to introduce some useful additions and enhancements, with respect to new and advanced combustion principles like diesel- and gasoline- homogeneous charge compression ignition (HCCI). In the existing heat transfer equation according to Bargende the calculation of the actual combustion chamber surface area is formulated in accordance with the work of Hohenberg. Hohenberg found experimentally that in the piston top land only about 20-30% of the wall heat flux values from the combustion chamber are transferred to the liner and piston wall. Hohenberg explained this phenomenon that is caused by lower gas temperature and convection level in charge within the piston top land volume. The formulation just adds the existing piston top land surface area multiplied by a specified factor to the surface of the combustion chamber.
Technical Paper

Development of an Enhanced Mean-Value-Model for Optimization of Measures of Thermal-Management

2008-04-14
2008-01-1169
In this paper, a simulation approach is introduced which takes into account all relevant heat sources and sinks in the combustion engine and in the engine compartment. With this approach, it is possible to calculate the appearing power flow and enthalpy flow as well as the component temperatures. Therefore, the complex thermodynamic and friction processes in the engine are described as simple as possible; the complete system can still be described reliably within certain limits, and the effects of different thermal optimization measures can be shown. It is an essential point for the modeling that only two integral quantities are necessary (the high pressure efficiency and the high pressure wall heat loss) for the complete combustion model.
Technical Paper

Improvement of Engine Heat-Transfer Calculation in the Three-Dimensional Simulation Using a Phenomenological Heat-Transfer Model

2001-09-24
2001-01-3601
Improvement of heat-transfer calculation for SI-engines in the three-dimensional simulation has been achieved and widely been tested by using a phenomenological heat-transfer model. The model is based on the local application of an improved Re-Nu-correlation (dimensional analysis) proposed by Bargende [1]. This approach takes advantage of long experience in engine heat transfer modeling in the real working process analysis. The results of numerous simulations of different engine meshes show that the proposed heat-transfer model enables to calculate the overall as well as the local heat transfer in good agreement with both real working process analyses and experimental investigations. The influence of the mesh structure has also been remarkably reduced and compared to the standard wall function approach, no additional CPU-time is required.
Technical Paper

Wall Heat Transfer in a Multi-Link Extended Expansion SI-Engine

2017-09-04
2017-24-0016
The real cycle simulation is an important tool to predict the engine efficiency. To evaluate Extended Expansion SI-engines with a multi-link cranktrain, the challenge is to consider all concept specific effects as best as possible by using appropriate submodels. Due to the multi-link cranktrain, the choice of a suitable heat transfer model is of great importance since the cranktrain kinematics is changed. Therefore, the usage of the mean piston speed to calculate a heat-transfer-related velocity for heat transfer equations is not sufficient. The heat transfer equation according to Bargende combines for its calculation the actual piston speed with a simplified k-ε model. In this paper it is assessed, whether the Bargende model is valid for Extended Expansion engines. Therefore a single-cylinder engine is equipped with fast-response surface-thermocouples in the cylinder head. The surface heat flux is calculated by solving the unsteady heat conduction equation.
Technical Paper

Simulation Program for Design of the Cooling Air Duct of Motor Cars for Optimizing the Cooling System

1994-03-01
940603
A numerical simulation program for the design of the cooling air duct and the cooling system of vehicles for stationary operating conditions is introduced. This program allows the simulation of interactions with the system environment resp. an air conditioning. Hot recirculations of air in the front part of the car and the inhomogenious flow through the heat exchangers radiator and condensor in their affects on the heat transfer capacity are simulated. The power demand of the fan, the water pump and the compressor is taken into account for calculating the heat flow from the engine into the cooling water.
Technical Paper

Friction Reduction by Optimization of Local Oil Temperatures

2019-09-09
2019-24-0177
The reduction of engine-out emissions and increase of the total efficiency is a fundamental approach to reduce the fuel consumption and thus emissions of vehicles driven by combustion engines. Conventional passenger cars are operated mainly in lower part loads for most of their lifetime. Under these conditions, oil temperatures are far below the maximum temperature allowed and dominate inside the journal bearings. Therefore, the objective of this research was to investigate possible potentials of friction reduction by optimizing the combustion engine’s thermal management of the oil circuit. Within the engine investigations, it was shown that especially the friction of the main and connecting rod bearings could be reduced with an increase of the oil supply temperature. Furthermore, on a journal bearing test rig, it was shown that no excessive wear of the bearings is to be expected in case of load increase and simultaneous supply of cooler oil.
Journal Article

Experimental Investigation of the Pressure Drop during Water Condensation inside Charge Air Coolers

2021-04-06
2021-01-0202
This paper investigates the pressure drop with and without condensation inside a charge air cooler. The background to this investigation is the fact that the stored condensate in charge air coolers can be torn into the combustion chamber during different driving states. This may result in misfiring or in the worst-case lead to an engine failure. In order to prevent or reduce the accumulated condensate inside charge air coolers, a better understanding of the detailed physics of this process is required. To this end, one single channel of the charge air side is investigated in detail by using an experimental setup that was built to reproduce the operating conditions leading to condensation. First, measurements of the pressure drop without condensation are conducted and a good agreement with experimental data of a comparable heat exchanger reported in Kays and London [1] is shown.
X