Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Dissimilar Joining of Aluminum Alloy and Steel by Resistance Spot Welding

2009-04-20
2009-01-0034
This study concerns a dissimilar materials joining technique for aluminum (Al) alloys and steel for the purpose of reducing the vehicle body weight. The tough oxide layer on the Al alloy surface and the ability to control the Fe-Al intermetallic compound (IMC) thickness are issues that have so far complicated the joining of Al alloys and steel. Removing the oxide layer has required a high heat input, resulting in the formation of a thick Fe-Al IMC layer at the joint interface, making it impossible to obtain satisfactory joint strength. To avoid that problem, we propose a unique joining concept that removes the oxide layer at low temperature by using the eutectic reaction between Al in the Al alloy and zinc (Zn) in the coating on galvanized steel (GI) and galvannealed steel (GA). This makes it possible to form a thin, uniform Fe-Al IMC layer at the joint interface. Welded joints of dissimilar materials require anticorrosion performance against electrochemical corrosion.
Technical Paper

Work Hardening and Strength Analysis of Steel Structure with Special Cross Section

2002-07-09
2002-01-2114
This paper presents the results of a strength analysis of a newly developed steel structure featuring a special cross section achieved with the hydroforming process that minimizes the influence of springback. This structure has been developed in pursuit of further weight reductions for the steel body in white. A steel tube with tensile strength of 590 MPa was fabricated in a low-pressure hydroforming operation, resulting in thicker side walls. The results of a three-point bending test showed that the bending strength of the new steel structure with thicker side walls was substantially increased. A finite element crush analysis based on the results of a forming analysis was shown to be effective in predicting the strength of the structure, including the effect of work hardening.
Technical Paper

Development of Door Guard Beams Utilizing Ultra High Strength Steel

1981-02-01
810031
Door guard beams have been developed through the utilization of ultra high strength steel (tensile strength>100 kg/mm2). At first, the sheet metal gauge was reduced in proportion to the strength of the ultra high strength without changing the shape of the beam section. This caused beam buckling and did not meet guard beam specifications. Analyzing this phenomena in accordance with the buckling theory of thin plates, a design criteria that makes effective use of the advantages of ultra high strength was developed. As a result, our newly designed small vehicle door guard beams are 20% lighter and 26% thinner than conventional ones. This makes it possible to reduce door thickness while increasing interior volume.
Technical Paper

Integrated Body Design System

1973-02-01
730215
Up to now, drawing of body lines has taken a long time and required skilled workers, and thus has been an obstacle to shortening the time needed to develop a new model. A new on-line system and data file, called the Integrated Body Design System, make body lines lofting easy and speedy, especially in outer panel designs. This on-line system has been developed by: 1. Effective combination of a large computer, a graphic display, a measuring machine, and a numerically controlled drafting machine. 2. Development of software for monitoring a large quantity of data using the technique of list processing.
X