Refine Your Search

Topic

Author

Search Results

Journal Article

UHC and CO Emissions Sources from a Light-Duty Diesel Engine Undergoing Dilution-Controlled Low-Temperature Combustion

2009-09-13
2009-24-0043
Unburned hydrocarbon (UHC) and carbon monoxide (CO) emission sources are examined in an optical, light-duty diesel engine operating under low load and engine speed, while employing a highly dilute, partially premixed low-temperature combustion (LTC) strategy. The impact of engine load and charge dilution on the UHC and CO sources is also evaluated. The progression of in-cylinder mixing and combustion processes is studied using ultraviolet planar laser-induced fluorescence (UV PLIF) to measure the spatial distributions of liquid- and vapor-phase hydrocarbon. A separate, deep-UV LIF technique is used to examine the clearance volume spatial distribution and composition of late-cycle UHC and CO. Homogeneous reactor simulations, utilizing detailed chemical kinetics and constrained by the measured cylinder pressure, are used to examine the impact of charge dilution and initial stoichiometry on oxidation behavior.
Journal Article

Selection of Welding Parameter during Friction Stir Spot Welding

2008-04-14
2008-01-0146
The selection of parameters during friction stir spot welding of Al-alloys and Mg-alloys is discussed. The role of tool rotation speed, plunge rate, and dwell time is examined in relation to the tool heating rate,temperature, force, and torque that occur during spot welding. In order to reduce the cycle time and tool force during Al- alloy spot welding, it is necessary to increase the tool rotation speed >1500 RPM. The measured peak temperature in the stir zone is determined by the rotation speed and dwell time, and is ultimately limited by the solidus of the alloy. When tool rotation speeds >1500 RPM are employed during AZ91 Mg-alloy spot welding, the tendency for melted film formation and cracking are greatly increased.
Technical Paper

Microcellular Ceramic Foams: Manufacturing and Study of Acoustical Properties

2007-05-15
2007-01-2187
A novel processing method for fabricating high porosity microcellular ceramic foams for sound absorption applications has been developed. The strategy for fabricating the ceramic foams involves: (i) forming some shapes using a mixture of preceramic polymer and expandable microspheres by a conventional ceramic forming method, (ii) foaming the compact by heating, (iii) cross-linking the foamed body, and (iv) transforming the foamed body into ceramic foams by pyrolysis. By controlling the microsphere content and that of the base elastomer, it was possible to adjust the porosity with a very high open-cell content (ranging between 43 - 95%), high microcellular cell densities (9 × 108 - 1.6 × 109 cells/cm3) and desired expansion ratios (3 - 6 folds). Sound absorption testing has been performed using ASTM C-384 standard test. The preliminary results show that ceramic foams are candidate sound absorption materials.
Technical Paper

Influence of the Compression Ratio on the Performance and Emissions of a Mini HCCI Engine Fueled Ether with Diethyl

2007-10-29
2007-01-4075
Power supply systems play a very important role in applications of everyday life. Mainly, for low power generation, there are two ways of producing energy: electrochemical batteries and small engines. In the last few years many improvements have been carried out in order to obtain lighter batteries with longer duration but unfortunately the energy density of 1 MJ/kg seems to be an asymptotic value. If the energy source is an organic fuel with an energy density of around 29 MJ/kg and a minimum overall efficiency of only 3.5%, this device can surpass the batteries. Nowadays the most efficient combustion process is HCCI combustion which is able to combine high energy conversion efficiency and low emission levels with a very low fuel consumption. In this paper, an investigation has been carried out concerning the effects of the compression ratio on the performance and emissions of a mini, Vd = 4.11 [cm3], HCCI engine fueled with diethyl ether.
Technical Paper

Detailed Heat Release Analyses with Regard to Combustion of RME and Oxygenated Fuels in an HSDI Diesel Engine

2007-04-16
2007-01-0627
Experiments on a modern DI Diesel engine were carried out: The engine was fuelled with standard Diesel fuel, RME and a mixture of 85% standard Diesel fuel, 5% RME and 10% higher alcohols under low load conditions (4 bar IMEP). During these experiments, different external EGR levels were applied while the injection timing was chosen in a way to keep the location of 50% heat release constant. Emission analysis results were in accordance with widely known correlations: Increasing EGR rates lowered NOx emissions. This is explained by a decrease of global air-fuel ratio entailing longer ignition delay. Local gas-fuel ratio increases during ignition delay and local combustion temperature is lowered. Exhaust gas analysis indicated further a strong increase of CO, PM and unburned HC emissions at high EGR levels. This resulted in lower combustion efficiency. PM emissions however, decreased above 50% EGR which was also in accordance with previously reported results.
Technical Paper

Fuel Injection and Mean Swirl Effects on Combustion and Soot Formation in Heavy Duty Diesel Engines

2007-04-16
2007-01-0912
High-speed video imaging in a swirl-supported (Rs = 1.7), direct-injection heavy-duty diesel engine operated with moderate-to-high EGR rates reveals a distinct correlation between the spatial distribution of luminous soot and mean flow vorticity in the horizontal plane. The temporal behavior of the experimental images, as well as the results of multi-dimensional numerical simulations, show that this soot-vorticity correlation is caused by the presence of a greater amount of soot on the windward side of the jet. The simulations indicate that while flow swirl can influence pre-ignition mixing processes as well as post-combustion soot oxidation processes, interactions between the swirl and the heat release can also influence mixing processes. Without swirl, combustion-generated gas flows influence mixing on both sides of the jet equally. In the presence of swirl, the heat release occurs on the leeward side of the fuel sprays.
Technical Paper

Eutectic Segregation and Cracking in AZ91 Friction Stir Spot Welds

2007-04-16
2007-01-1700
Friction stir spot welding of Mg-alloy AZ91 is investigated. The temperature cycles within the stir zone and in the TMAZ region are examined using thermocouples, which are located within the tool itself and also by locating thermocouples in drilled holes at specific locations relative to the bottom of the tool shoulder and the periphery of the rotating pin. The measured temperatures in the stir zone range from 437°C to 460°C (0.98Ts, where Ts is the solidus temperature in degrees Kelvin) in AZ91 spot welds produced using plunge rates from 2.5 and 25 mm/s. The thermal cycle within the stir zone formed during AZ91 spot welding could not be measured by locating thermocouples within the workpiece in drilled holes adjacent to the periphery of the rotating pin.
Technical Paper

The Effect of Surface Modification on the Mechanical Properties of Hemp Fiber/Polyester Composites

2004-03-08
2004-01-0728
In this work hemp fibers were chemically treated in order to improve the fiber/matrix interaction in hemp fiber/unsaturated polyester composites prepared by a Resin Transfer Molding (RTM) process. Chemicals used for paper sizing (AKD, ASA, Rosin Acid and SMA) as well as a silane compound and sodium hydroxide were used to modify the fibers' surface. The tensile, flexural and impact properties of the resulting materials were measured. A slight improvement in mechanical properties was observed for the SMA, silane and alkali treated specimens. However close analysis of these tests and of the fracture surface of the samples showed that there was no amelioration of the fiber/matrix adhesion. It was found that predicted tensile strengths using the rule of mixture were very close to the experimental values obtained in this work. Finally the properties of an hybrid glass fiber/hemp fiber composite were found to be very promising
Technical Paper

Boosting for High Load HCCI

2004-03-08
2004-01-0940
Homogeneous Charge Compression Ignition (HCCI) holds great promises for good fuel economy and low emissions of NOX and soot. The concept of HCCI is premixed combustion of a highly diluted mixture. The dilution limits the combustion temperature and thus prevents extensive NOX production. Load is controlled by altering the quality of the charge, rather than the quantity. No throttling together with a high compression ratio to facilitate auto ignition and lean mixtures results in good brake thermal efficiency. However, HCCI also presents challenges like how to control the combustion and how to achieve an acceptable load range. This work is focused on solutions to the latter problem. The high dilution required to avoid NOX production limits the mass of fuel relative to the mass of air or EGR. For a given size of the engine the only way to recover the loss of power due to dilution is to force more mass through the engine.
Technical Paper

Comparison of Heat Release and NOx Formation in a DI Diesel Engine Running on DME and Diesel Fuel

2001-03-05
2001-01-0651
Although there seems to be a consensus regarding the low emission potential of DME, there are still different opinions about why the low NOx emissions can be obtained without negative effects on thermal efficiency. Possible explanations are: The physical properties of DME affecting the spray and the mixture formation Different shape and duration of the heat release in combination with reduced heat losses In this paper an attempt is made to increase the knowledge of DME in relation to diesel fuel with respect to heat release and NOx formation. The emphasis has been to create injection conditions as similar as possible for both fuels. For that purpose the same injection system (CR), injection pressure (270 bar), injection timing and duration have been used for the two fuels. The only differences were the diameters of the nozzle holes, which were chosen to give the same fuel energy supply, and the physical properties of the fuels.
Technical Paper

The Influence of a Late In-Cylinder Air Injection on In-Cylinder Flow Measured with Particle Image Velocimetry (PIV)

2001-09-24
2001-01-3492
During development of an air assisted, direct injection combustion system, it was found that an air pulse during the late part of compression stroke significantly shortened the combustion duration and extended the lean limits of the engine. The effect of an injection of pure air through an air assist direct injector was studied with Particle Image Velocimetry, PIV. Results showed that an air pulse during the compression stroke significantly speeded up in-cylinder velocities, which also was showed in the heat release analysis. A system to use low density seeding particles was developed and is presented in the paper.
Technical Paper

Qualitative Laser-Induced Incandescence Measurements of Particulate Emissions During Transient Operation of a TDI Diesel Engine

2001-09-24
2001-01-3574
Laser-induced incandescence (LII) is a sensitive diagnostic technique capable of making exhaust particulate-matter measurements during transient operating conditions. This paper presents measurements of LII signals obtained from the exhaust gas of a 1.9-L TDI diesel engine. A scanning mobility particle sizer (SMPS) is used in fixed-size mode to obtain simultaneous number concentration measurements in real-time. The transient studies presented include a cranking-start/idle/shutdown sequence, on/off cycling of EGR, and rapid load changes. The results show superior temporal response of LII compared to the SMPS. Additional advantages of LII are that exhaust dilution and cooling are not required, and that the signal amplitude is directly proportional to the carbon volume fraction and its temporal decay is related to the primary particle size.
Technical Paper

Particle Image Velocimetry Flow Measurements and Heat-Release Analysis in a Cross-Flow Cylinder Head

2002-10-21
2002-01-2840
A specially designed cylinder head, enabling unthrottled operation with a standard cam-phasing mechanism, was tested in an optical single-cylinder engine. The in-cylinder flow was measured with particle image velocimetry (PIV) and the results were compared with heat release and emission measurements. The article also discusses effects of residual gas and effective compression ratio on heat-release and emissions. The special design of the cylinder head, with one inlet and one exhaust valve per camshaft, made it possible to operate the engine unthrottled at part load. Cam phasing led to late inlet valve closing, but also to increased valve overlap. The exhaust valve closing was late in the intake stroke, resulting in high amounts of residual gases. Two different camshafts were used with late inlet valve closing. One of the camshafts had shorter valve open duration on the phased exhaust cam lobe.
Technical Paper

Concurrent Quantitative Laser-Induced Incandescence and SMPS Measurements of EGR Effects on Particulate Emissions from a TDI Diesel Engine

2002-10-21
2002-01-2715
A comparison of scanning mobility particle sizer (SMPS) and laser-induced incandescence (LII) measurements of diesel particulate matter (PM) was performed. The results reveal the significance of the aggregate nature of diesel PM on interpretation of size and volume fraction measurements obtained with an SMPS, and the accuracy of primary particle size measurements by LII. Volume fraction calculations based on the mobility diameter measured by the SMPS substantially over-predict the space-filling volume fraction of the PM. Correction algorithms for the SMPS measurements, to account for the fractal nature of the aggregate morphology, result in a substantial reduction in the reported volume. The behavior of the particulate volume fraction, mean and standard deviation of the mobility diameter, and primary particle size are studied as a function of the EGR for a range of steady-state engine speeds and loads for a turbocharged direct-injection diesel engine.
Technical Paper

Injection of Fuel at High Pressure Conditions: LES Study

2011-09-11
2011-24-0041
This paper presents a large eddy simulation study of the liquid spray mixing with hot ambient gas in a constant volume vessel under engine-like conditions with the injection pressure of 1500 bar, ambient density 22.8 kg/m₃, ambient temperature of 900 K and an injector nozzle of 0.09 mm. The simulation results are compared with the experiments carried out by Pickett et al., under similar conditions. Under modern direct injection diesel engine conditions, it has been argued that the liquid core region is small and the droplets after atomization are fine so that the process of spray evaporation and mixing with the air is controlled by the heat and mass transfer between the ambient hot gas and central fuel flow. To examine this hypothesis a simple spray breakup model is tested in the present LES simulation. The simulations are performed using an open source compressible flow solver, in OpenFOAM.
Technical Paper

Development and Calibration of One Dimensional Engine Model for Hardware-In-The-Loop Applications

2018-04-03
2018-01-0874
The present paper aims at developing an innovative procedure to create a one-dimensional (1D) real-time capable simulation model for a heavy-duty diesel engine. The novelty of this approach is the use of the top-level engine configuration, test cell measurement data, and manufacturer maps as opposite to common practice of utilizing a detailed 1D engine model. The objective is to facilitate effective model adjustments and hence further increase the application of Hardware-in-the-Loop (HiL) simulations in powertrain development. This work describes the development of Fast Running Model (FRM) in GT-SUITE simulation software. The cylinder and gas-path modeling and calibration are described in detail. The results for engine performance and exhaust emissions produced satisfactory agreement with both steady-state and transient experimental data.
Technical Paper

Heavy Duty Diesel Engine Modeling with Layered Artificial Neural Network Structures

2018-04-03
2018-01-0870
In order to meet emissions and power requirements, modern engine design has evolved in complexity and control. The cost and time restraints of calibration and testing of various control strategies have made virtual testing environments increasingly popular. Using Hardware-in-the-Loop (HiL), Volvo Penta has built a virtual test rig named VIRTEC for efficient engine testing, using a model simulating a fully instrumented engine. This paper presents an innovative Artificial Neural Network (ANN) based model for engine simulations in HiL environment. The engine model, herein called Artificial Neural Network Engine (ANN-E), was built for D8-600 hp Volvo Penta engine, and directly implemented in the VIRTEC system. ANN-E uses a combination of feedforward and recursive ANNs, processing 7 actuator signals from the engine management system (EMS) to provide 30 output signals.
Technical Paper

A Real Time NOx Model for Conventional and Partially Premixed Diesel Combustion

2006-04-03
2006-01-0195
In this paper a fast NOx model is presented which can be used for engine optimization, aftertreatment control or virtual mapping. A cylinder pressure trace is required as input data. High calculation speed is obtained by using table interpolation to calculate equilibrium temperatures and species concentrations. Test data from a single-cylinder engine and from a complete six-cylinder engine have been used for calibration and validation of the model. The model produces results of good agreement with emission measurements using approximately 50 combustion product zones and a calculation time of one second per engine cycle. Different compression ratios, EGR rates, injection timing, inlet pressures etc. were used in the validation tests.
Technical Paper

Energy Generation and Stir Zone Dimensions in Friction Stir Spot Welds

2006-04-03
2006-01-0971
Energy generation and utilization during friction stir spot welding of Al 6061-T6 and AM50 sheet materials are investigated. The dimensions of the stir zones during plunge testing are largely unchanged when the tool rotational speed increases from 1500 RPM to 3000 RPM (for a plunge rate of 1 mm/s) and when the rate of tool penetration increases from 1 mm/s to 10 mm/s (for a tool rotational speed of 3000 RPM). The energy resulting from tool rotation is also unaffected when higher tool rotational speeds are applied. The rotating pin accounts for around 70% and 66% of the energy generated when 6.3 mm thick Al 6061-T6 and AM50 sheet materials are spot welded without the application of a dwell period. In direct contrast, the contribution made by the tool shoulder increases to around 48% (Al 6061-T6) and to 65% (AM50) when a four second long dwell period is incorporated during spot welding of 6.3 mm thick sheets.
Technical Paper

Cell Nucleation and Growth Study of PP Foaming with CO2 in a Batch-Simulation System

2006-04-03
2006-01-0507
TPO is being used to make automotive parts for its number of advantages: i) low temperature flexibility and ductility, ii) excellent impact/stiffness/flow balance, iii) excellent weatherability, and iv) free-flowing pellet form for easy processing, storage, and handling. However, by foaming TPO, due to its higher rigidity-to-weigh ratio, it would offer additional advantages over the solid counterparts in terms of reduced weight, reduced material cost, and decreased fuel usage without compromising their performance. Since a major component in TPO is polypropylene (PP), understanding PP foaming behaviours is an important step towards understanding TPO foaming. For foam materials, cell density and cell size are two significant parameters that affect their material properties. In this research, we observed the cell nucleation and initial growth behaviours of PP foams blown with CO2 under various experimental conditions in a batch foaming simulation system.
X