Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Impact of Temperature on the A123 Li-Ion Battery Performance and Hybrid Electric Vehicle Range

2013-04-08
2013-01-1521
Within the last decade, the automotive industry has made major progress toward the electrification of drive trains and application of electrochemical power sources. Among available storage solutions, Li-ion batteries are considered as the most attractive and are set to be used in the next generation of hybrid and electric vehicles. This is due to their superiority in energy density, power density, and low self-discharge and high cycle life compared to other chemistries. However, there are some limitations associated with Li-ion battery; among them is the operating temperature range. Any deviation from a narrow temperature range may result in low overall performance and potential degradation of the cells. In this paper, impact of ambient temperature on the A123 Li-ion batteries performance is investigated. A123 cells have been tested under constant charge-discharge cycles, hybrid pulse power characterization (HPPC) tests and also standard drive cycle tests.
Technical Paper

Numerical Modeling of Rear Subframe Under Different Loading Conditions

2013-04-08
2013-01-0571
In this paper, finite element methods are used to analyze the rear subframe for Chevrolet Malibu. Plasticity based material model along with dynamic and static analysis is used. Commercial software LS-DYNA is used to model the subframe. Half model for the subframe is used with the corresponding boundary conditions for our simulations. A material model based on power law is used to account for the material behavior in all simulations. Different loading conditions are used to analyze the subframe under normal driving conditions while the crash results are used to analyze the subframe under vehicle crash. This data is used to compare the performance and safety of the original stock car. A parametric study is also conducted to analyze the effect of material response by changing the material hardening properties. Results show that 1018 mild steel is the most suitable material under crash and normal loading conditions.
X