Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Extended Range Electric Vehicle Powertrain Simulation, and Comparison with Consideration of Fuel Cell and Metal-Air Battery

The automobile industry has been undergoing a transition from fossil fuels to a low emission platform due to stricter environmental policies and energy security considerations. Electric vehicles, powered by lithium-ion batteries, have started to attain a noticeable market share recently due to their stable performance and maturity as a technology. However, electric vehicles continue to suffer from two disadvantages that have limited widespread adoption: charging time and energy density. To mitigate these challenges, vehicle Original Equipment Manufacturers (OEMs) have developed different vehicle architectures to extend the vehicle range. This work seeks to compare various powertrains, including: combined power battery electric vehicles (BEV) (zinc-air and lithium-ion battery), zero emission fuel cell vehicles (FCV)), conventional gasoline powered vehicles (baseline internal combustion vehicle), and ICE engine extended range hybrid electric vehicle.
Technical Paper

Volumetric Tire Models for Longitudinal Vehicle Dynamics Simulations

Dynamic modelling of the contact between the tires of automobiles and the road surface is crucial for accurate and effective vehicle dynamic simulation and the development of various driving controllers. Furthermore, an accurate prediction of the rolling resistance is needed for powertrain controllers and controllers designed to reduce fuel consumption and engine emissions. Existing models of tires include physics-based analytical models, finite element based models, black box models, and data driven empirical models. The main issue with these approaches is that none of these models offer the balance between accuracy of simulation and computational cost that is required for the model-based development cycle. To address this issue, we present a volumetric approach to model the forces/moments between the tire and the road for vehicle dynamic simulations.
Technical Paper

Real-Time Robust Lane Marking Detection and Tracking for Degraded Lane Markings

Robust lane marking detection remains a challenge, particularly in temperate climates where markings degrade rapidly due to winter conditions and snow removal efforts. In previous work, dynamic Bayesian networks with heuristic features were used with the feature distributions trained using semi-supervised expectation maximization, which greatly reduced sensitivity to initialization. This work has been extended in three important respects. First, the tracking formulation used in previous work has been corrected to prevent false positives in situations where only poor RANSAC hypotheses were generated. Second, the null hypothesis is reformulated to guarantee that detected hypotheses satisfy a minimum likelihood. Third, the computational requirements have been greatly reduced by computing an upper bound on the marginal likelihood of all part hypotheses upon generation and rejecting parts with an upper bound less likely than the null hypothesis.
Technical Paper

Recognizing Driver Braking Intention with Vehicle Data Using Unsupervised Learning Methods

Recently, the development of braking assistance system has largely benefit the safety of both driver and pedestrians. A robust prediction and detection of driver braking intention will enable driving assistance system response to traffic situation correctly and improve the driving experience of intelligent vehicles. In this paper, two types unsupervised clustering methods are used to build a driver braking intention predictor. Unsupervised machine learning algorithms has been widely used in clustering and pattern mining in previous researches. The proposed unsupervised learning algorithms can accurately recognize the braking maneuver based on vehicle data captured with CAN bus. The braking maneuver along with other driving maneuvers such as normal driving will be clustered and the results from different algorithms which are K-means and Gaussian mixture model (GMM) will be compared.
Technical Paper

Efficient Electro-Thermal Model for Lithium Iron Phosphate Batteries

The development of a comprehensive battery simulator is essential for future improvements in the durability, performance and service life of lithium-ion batteries. Although simulations can never replace actual experimental data, they can still be used to provide valuable insights into the performance of the battery, especially under different operating conditions. In addition, a single-cell model can be easily extended to the pack level and can be used in the optimization of a battery pack. The first step in building a simulator is to create a model that can effectively capture both the voltage response and thermal behavior of the battery. Since these effects are coupled together, creating a robust simulator requires modeling both components. This paper will develop a battery simulator, where the entire battery model will be composed of four smaller submodels: a heat generation model, a thermal model, a battery parameter model and a voltage response model.