Refine Your Search

Search Results

Viewing 1 to 18 of 18
Technical Paper

Fatigue Testing of Sheet Metals Subject to Uniaxial Tension-Compression

The paper describes the fabrication and testing of thin sheet metal uniaxial fatigue specimens that have been laminated to prevent buckling. When hot or cold rolled metal thicknesses are below 5 mm, the usual fatigue specimens, having a uniform gauge length of 7.5 mm or more, buckle in the short life region (∼10000 cycles) of strain-life testing. For thinner materials, non-standard specimen designs or anti-buckling guides have been used, but each of these solutions requires additional instrumentation. The results presented in this paper show that laminating multiple sheets of material together to increase the specimen's effective thickness raises the strain level for the onset of buckling of the standard uniaxial specimen. Constant and variable amplitude fatigue tests extending into the high-strain short-life region were performed. Fatigue life data for multiple layer specimens were in good agreement with those obtained for single layer specimens.
Technical Paper

Evaluation of Small Scale Formability Results on Large Scale Parts: Aluminum Alloy Tailor Welded Blanks

This paper investigates the application of standard formability testing results for aluminum alloy tailor welded blanks (TWB) to full size stampings. The limit strains obtained from formability testing are compared to measured strains in a larger scale part. The measured strains in the full scale part are also compared to predictions from finite element simulation.
Technical Paper

Simulation of Electromagnetic Forming of Aluminum Alloy Sheet

Electromagnetic forming of aluminum alloys provides improved forming limits, minimal springback and rapid implementation. The ability to predict the minimum energy required in electromagnetic forming is essential in developing an efficient process. Understanding the development of the strain distribution over time in the blank is also highly desired. A numerical model is needed that offers insight into these areas and the electromagnetic forming process in general that cannot easily be extracted from experiments. To address these concerns, ANSYS/EMAG is used to model the time varying currents that are discharged through the coil in order to obtain the transient magnetic forces acting on the blank. The body forces caused by electromagnetic induction are then used as the boundary condition to model the high velocity deformation of the blank with LS-DYNA, an explicit dynamic finite element code.
Technical Paper

Dent Resistance of Medium Scale Aluminum Structural Assemblies

This work outlines the evaluation of static and dynamic dent resistance of medium scale structural assemblies fabricated using AA6111 and AA5754. The assemblies fabricated attempt to mimic common automotive hood designs allowing for a parametric study of the support spacing, sheet thickness and panel curvature. Closure panels of AA6111, of two thicknesses (0.8, and 0.9mm), are bonded to re-usable inner panels fabricated using AA5754 to form the structural assemblies tested. While normal practice would use the same alloy for both the inner and the outer, in the current work, AA5754 was adopted for ease of welding. Numerical simulations were performed using LS DYNA. A comparison of experimental and numerically simulated results is presented. The study attempts to establish an understanding of the relationship between structural support conditions and resulting dent depths for both static and dynamic loading conditions.
Technical Paper

Weld Failure in Formability Testing of Aluminum Tailor Welded Blanks

The present work investigates weld failure modes during formability tests of multi-gauge aluminum Tailor Welded Blanks (TWBs). The limiting dome height test is used to evaluate formability of TWBs. Three gauge combinations utilizing aluminum alloy 5754 sheets are considered (2 to 1 mm, 1.6 to 1 mm and 2 to 1.6 mm). Three weld orientations have been considered: transverse, longitudinal and 45°. Interaction of several factors determines the type of failure that occurs in a TWB specimen. These factors are weld orientation, morphology and distribution of weld defects, and the magnitude of constraint imposed by the thicker sheet to the thin sheet. The last factor depends on the difference in thickness of the sheet pair and is usually expressed in terms of gauge ratio. In general TWBs show two different types of fracture: weld failure and failure of the thin aluminum sheet. Only the former will be discussed in this paper.
Technical Paper

Effects of Bead Surface Preparation on Friction in the Drawbead Test

The effects of bead surface roughness on friction, die pickup, and sheet surface damage in the drawbead test were investigated. Beads of HRC 58 hardness were prepared from centerless-ground rod by circumferential honing to 0.05 μm roughness, followed by finishing with 100, 400, or 600 grit SiC paper in the axial direction. Paraffinic base oils with viscosities of 4.5, 30, and 285 mm2/s were used neat and in conjunction with stearic acid. The effects of bead roughness depended on the nature of metal transfer, especially its distribution and firmness of attachment. The presence of a boundary additive increased, decreased, or had no effect on friction depending on the particular coating and bead finish.
Technical Paper

The Effect of Nitrogen on the Mechanical Properties of an SAE 1045 Steel

A cold worked and induction hardened SAE1045 steel component exhibited excessive distortion after cold working and straightening, as well as cracking during straightening after induction hardening. Since the problems occurred only in certain heats of electric furnace (EF) steel, in which nitrogen content can vary widely and in some cases be quite high, and never occurred for basic oxygen furnace (BOF) steel for which nitrogen contents are uniformly low it was suspected that the source of the problem was low temperature nitrogen strain aging in heats of EF steel with a high nitrogen content. The measured distortion and mechanical properties at various stages in the fabrication process showed that while nitrogen content had no significant effect on the hot rolled steel the component distortion and strength after cold working and after induction hardening increased with increasing nitrogen content.
Technical Paper

Coatings on Resistance Welding Electrodes to Extend Life

TiCP/Ni coating has been deposited onto the electrodes by electro-spark deposition to improve electrode life during resistance welding of Zn-coated steels. However, welding results revealed that molten Zn penetrates into coating through the cracks and then reacts with substrate copper alloy to form brasses. In the present work, laser treatment was performed on the TiCP/Ni coated electrodes to eliminate cracks formed in the as-deposited TiCP/Ni coating. In addition, a multi-electro-spark deposition of Ni, TiCP/Ni and Ni has also been carried out to improve coating quality. On the other hand, a TiB2 coating was also investigated. those coatings were characterized by electro-microscopy, energy-dispersive X-ray analysis, X-ray diffraction and micro-hardness tests. The results showed that cracks within the as-deposited TiCP/Ni coating could be eliminated with the use of laser treatment or a multi-layer deposition process.
Technical Paper

Weldability Improvement Using Coated Electrodes for RSW of HDG Steel

The increased use of zinc coatings on steels has led to a decrease in their weldability. Weld current and time need to be increased in order to achieve sound welds on these materials compared to uncoated steels, and electrode tip life suffers greatly due to rapid alloying and degradation. In this work, typical uncoated Class II electrodes were tested along with a TiC metal matrix composite (MMC) coated electrode. Tests were conducted to study the weldability and process of nugget formation for both electrodes on HDG (hot dipped galvanized) HSLA (high strength low alloys) steels. Current and time ranges were constructed for both types of electrodes by varying either the weld current or weld time while holding all other parameters constant. Analysis of weld microstructures was conducted on cross-sectioned welds using SEM (scanning electron microscopy). Using the coated electrodes reduced weld current and times needed to form MWS (minimum weld size) on the coated steels.
Technical Paper

Monitoring the Effect of RSW Pulsing on AHSS using FEA (SORPAS) Software

In this study, a finite element software application (SORPAS®) is used to simulate the effect of pulsing on the expected weld thermal cycle during resistance spot welding (RSW). The predicted local cooling rates are used in combination with experimental observation to study the effect pulsing has on the microstructure and mechanical properties of Zn-coated DP600 AHSS (1.2mm thick) spot welds. Experimental observation of the weld microstructure was obtained by metallographic procedures and mechanical properties were determined by tensile shear testing. Microstructural changes in the weld metal and heat affect zone (HAZ) were characterized with respect to process parameters.
Technical Paper

Numerical and Experimental Investigation of 5xxx Aluminum Alloy Stretch Flange Forming

Stretch flange features are commonly found in the corner regions of commercial parts, such as window cutouts, where large strains can induce localization and necking. In this study, laboratory-scale stretch flange forming experiments on AA5182 and AA5754 were conducted to address the formability of these aluminum alloys under undergoing this specific deformation process. Two distinct cracking modes were found in the stretch flange samples. One is radial cracking at the inner edge of flange (cutout edge) while the other is circumferential cracking away from the inner edge at the punch profile radius. Numerical simulation of the stretch flange forming operations was conducted with an explicit finite element code-LS-DYNA. A coalescence-suppressed Gurson-based material model is used in the finite element model. Void coalescence and final failure in stretch flange is simulated through measured second-phase particle fields with a so-called damage percolation model.
Technical Paper

Multi-Scale FE/Damage Percolation Modeling of Ductile Damage Evolution in Aluminum Sheet Forming

A so-called damage percolation model is coupled with Gurson-based finite element (FE) approach in order to accommodate the high strain gradients and localized ductile damage. In doing so, void coalescence and final failure are suppressed in Gurson-based FE modeling while a measured second phase particle field is mapped onto the most damaged mesh area so that percolation modeling can be performed to capture ductile fracture in real sheet forming operations. It is revealed that void nucleation within particle clusters dominates ductile fracture in aluminum alloy sheet forming. Coalescence among several particle clusters triggered final failure of materials. A stretch flange forming is simulated with the coupled modeling.
Technical Paper

Application of Damage Models in Bending and Hydroforming of Aluminum Alloy Tube

This paper examines the application of damage models in tube bending and subsequent hydroforming of AlMg3.5Mn aluminum alloy tubes. An in-house Gurson-based damage model, incorporated within LS-DYNA, has been used for the simulations. The applied damage model contains several void nucleation and growth parameters that must be determined for each material. A simpler straight tube hydroforming process was considered first to check the damage parameters and predicted ductility. Then the model was applied to a sequence of bending and hydroforming. The damage history from pre-bending was mapped to the hydroforming stage, to allow prediction of the overall ductility. The applied forming parameters in the simulation were based on data extracted during the experimental tests. Finally, the numerical results were compared to the experimental data.
Journal Article

Impact Testing of a Hot-Formed B-Pillar with Tailored Properties - Experiments and Simulation

This paper presents the numerical validation of the impact response of a hot formed B-pillar component with tailored properties. A laboratory-scale B-pillar tool is considered with integral heating and cooling sections in an effort to locally control the cooling rate of an austenitized blank, thereby producing a part with tailored microstructures to potentially improve the impact response of these components. An instrumented falling-weight drop tower was used to impact the lab-scale B-pillars in a modified 3-point bend configuration to assess the difference between a component in the fully hardened (martensitic) state and a component with a tailored region (consisting of bainite and ferrite). Numerical models were developed using LS-DYNA to simulate the forming and thermal history of the part to estimate the final thickness and strain distributions as well as the predicted microstructures.
Journal Article

The Influence of the Through-Thickness Strain Gradients on the Fracture Characterization of Advanced High-Strength Steels

The development and calibration of stress state-dependent failure criteria for advanced high-strength steel (AHSS) and aluminum alloys requires characterization under proportional loading conditions. Traditional tests to construct a forming limit diagram (FLD), such as Marciniak or Nakazima tests, are based upon identifying the onset of strain localization or a tensile instability (neck). However, the onset of localization is strongly dependent on the through-thickness strain gradient that can delay or suppress the formation of a tensile instability so that cracking may occur before localization. As a result, the material fracture limit becomes the effective forming limit in deformation modes with severe through-thickness strain gradients, and this is not considered in the traditional FLD. In this study, a novel bending test apparatus was developed based upon the VDA 238-100 specification to characterize fracture in plane strain bending using digital image correlation (DIC).
Journal Article

Estimating the Strain-Based FLC of a Tube from Straight Tube Hydroforming Experiments and Numerical Models

The Extended Stress-Based Forming Limit Curve (XSFLC) failure criterion has been shown to provide good qualitative and quantitative predictions of failure (necking) in straight tube hydro forming when the on the level of end-feed (EF) used during hydro forming, the failure criterion has a tendency to over predict failure pressure at low Keeler-Brazier (K-B) approximation is used to define the XSFLC failure curve. Depending EF and under predict failure pressure for high EF. The over/under predictions suggest that the strain-space εFLC, which the XSFLC is based on, has too high of a plane-strain intercept (FLCo), when it is obtained using the K-B approximation (developed for sheet metal).
Journal Article

Symbolic Formulation of Multibody Dynamic Equations for Wheeled Vehicle Systems on Three-Dimensional Roads

A method to improve the computational efficiency of analyzing wheeled vehicle systems on three-dimensional (3-D) roads has been developed. This was accomplished by creating a technique to incorporate the tire on a 3-D road in a multibody dynamics model of the vehicle with an approach that formulates the governing equations using symbolic formulation. For general handling analysis performed on the vehicle, the tire forces and moments are determined using a tire model that represents the tire as a set of mathematical expressions. Since these expressions need numerical values to determine the forces and moments, a symbolic solution does not exist. Therefore, the evaluation of the tire forces and moments needs to be done during simulation. However, symbolic operations can be used when the governing equations are formulated to develop an efficient method to evaluate these forces.
Technical Paper

Crack Initiation and Propagation Fatigue Life Prediction for an A36 Steel Welded Plate Specimen

Fatigue crack initiation and propagation models predict the fatigue life of welded "T" specimens tested by the Fatigue Design and Evaluation (FDE) Committee of SAE under constant and variable amplitude load histories. The crack propagation equations stipulated by British Standard BS-7910 have been incorporated in a material memory model for cyclic deformation. The simulations begin with the crack initiation model and show how it is used to account for cyclic mean stress relaxation and the effects of periodic overloads. After the cracks initiate the BS-7910 model is applied to predict the crack advance due to either constant or variable amplitude histories. Simulation results correspond to the experimental results with good accuracy.