Refine Your Search

Search Results

Viewing 1 to 18 of 18
Journal Article

Improving the Understanding of Intake and Charge Effects for Increasing RCCI Engine Efficiency

2014-04-01
2014-01-1325
The present experimental engine efficiency study explores the effects of intake pressure and temperature, and premixed and global equivalence ratios on gross thermal efficiency (GTE) using the reactivity controlled compression ignition (RCCI) combustion strategy. Experiments were conducted in a heavy-duty single-cylinder engine at constant net load (IMEPn) of 8.45 bar, 1300 rev/min engine speed, with 0% EGR, and a 50% mass fraction burned combustion phasing (CA50) of 0.5°CA ATDC. The engine was port fueled with E85 for the low reactivity fuel and direct injected with 3.5% 2-ethylhexyl nitrate (EHN) doped into 91 anti-knock index (AKI) gasoline for the high-reactivity fuel. The resulting reactivity of the enhanced fuel corresponds to an AKI of approximately 56 and a cetane number of approximately 28. The engine was operated with a wide range of intake pressures and temperatures, and the ratio of low- to high-reactivity fuel was adjusted to maintain a fixed speed-phasing-load condition.
Journal Article

Experimental Investigation of Engine Speed Transient Operation in a Light Duty RCCI Engine

2014-04-01
2014-01-1323
Reactivity Controlled Compression Ignition (RCCI) is an engine combustion strategy that utilizes in-cylinder fuel blending to produce low NOx and PM emissions while maintaining high thermal efficiency. The current study investigates RCCI and conventional diesel combustion (CDC) operation in a light-duty multi-cylinder engine over transient operating conditions using a high-bandwidth, transient capable engine test cell. Transient RCCI and CDC combustion and emissions results are compared over an up-speed change from 1,000 to 2,000 rev/min. and a down-speed change from 2,000 to 1,000 rev/min. at a constant 2.0 bar BMEP load. The engine experiments consisted of in-cylinder fuel blending with port fuel-injection (PFI) of gasoline and early-cycle, direct-injection (DI) of ultra-low sulfur diesel (ULSD) for the RCCI tests and the same ULSD for the CDC tests.
Journal Article

Experimental Investigation of Transient Response and Turbocharger Coupling for High and Low Pressure EGR Systems

2014-04-01
2014-01-1367
The transient response of an engine with both High Pressure (HP) and Low Pressure (LP) EGR loops was compared by conducting step changes in EGR fraction at a constant engine speed and load. The HP EGR loop performance was shown to be closely linked to turbocharger performance, whereas the LP EGR loop was relatively independent of turbocharger performance and vice versa. The same experiment was repeated with the variable geometry turbine vanes completely open to reduce turbocharger action and achieve similar EGR rate changes with the HP and LP EGR loops. Under these conditions, the increased loop volume of the LP EGR loop prolonged the response of intake O2 concentration following the change in air-fuel ratio. The prolonged change of intake O2 concentration caused emissions to require more time to reach steady state as well. Strong coupling between the HP EGR loop and turbochargers was again observed using a hybrid EGR strategy.
Journal Article

Direct Dual Fuel Stratification, a Path to Combine the Benefits of RCCI and PPC

2015-04-14
2015-01-0856
Control of the timing and magnitude of heat release is one of the biggest challenges for premixed compression ignition, especially when attempting to operate at high load. Single-fuel strategies such as partially premixed combustion (PPC) use direct injection of gasoline to stratify equivalence ratio and retard heat release, thereby reducing pressure rise rate and enabling high load operation. However, retarding the heat release also reduces the maximum work extraction, effectively creating a tradeoff between efficiency and noise. Dual-fuel strategies such as reactivity controlled compression ignition (RCCI) use premixed gasoline and direct injection of diesel to stratify both equivalence ratio and fuel reactivity, which allows for greater control over the timing and duration of heat release. This enables combustion phasing closer to top dead center (TDC), which is thermodynamically favorable.
Journal Article

The Development of an Ignition Delay Correlation for PRF Fuel Blends from PRF0 (n-Heptane) to PRF100 (iso-Octane)

2016-04-05
2016-01-0551
A correlation was developed to predict the ignition delay of PRF blends at a wide range of engine-relevant operating conditions. Constant volume simulations were performed using Cantera coupled with a reduced reaction mechanism at a range of initial temperatures from 570-1860K, initial pressures from 10-100atm, oxygen mole percent from 12.6% to 21%, equivalence ratios from 0.30-1.5, and PRF blends from PRF0 to PRF100. In total, 6,480 independent ignition delay simulations were performed. The correlation utilizes the traditional Arrhenius formulation; with equivalence ratio (φ), pressure (p), and oxygen mole percentage (xo2) dependencies. The exponents α, β, and γ were fitted to a third order polynomial with respect to temperature with an exponential roll-off to a constant value at low temperatures to capture the behavior expressed by the reaction mechanism. The location and rate of the roll-off functions were modified by linear functions of PRF.
Technical Paper

Emissions Benefits of Group Hole Nozzle Injectors under Conventional Diesel Combustion Conditions

2020-04-14
2020-01-0302
This work explores the effectiveness of common rail fuel injectors equipped with Grouped Hole Nozzles (GHNs) in aiding the mixing process and reducing particulate matter (PM) emissions of Conventional Diesel Combustion (CDC) engines, while maintaining manageable Oxides of Nitrogen (NOx) levels. Parallel (pGHN), converging (cGHN) and diverging (dGHN) - hole GHNs were studied and the results were compared to a conventional, single hole nozzle (SHN) with the same flow area. The study was conducted on a single cylinder medium-duty engine to isolate the effects of the combustion from multi-cylinder effects and the conditions were chosen to be representative of a typical mid-load operating point for an on-road diesel engine. The effects of injection pressure and the Start of Injection (SOI) timing were explored and the tradeoffs between these boundary conditions are examined by using a response surface fitting technique, to identify an optimum operating condition.
Journal Article

Analysis of Deviations from Steady State Performance During Transient Operation of a Light Duty Diesel Engine

2012-04-16
2012-01-1067
Deviations between transient and steady state operation of a modern light duty diesel engine were identified by comparing rapid load transitions to steady state tests at the same speeds and fueling rates. The validity of approximating transient performance by matching the transient charge air flow rate and intake manifold pressure at steady state was also assessed. Results indicate that for low load operation with low temperature combustion strategies, transient deviations of MAF and MAP from steady state values are small in magnitude or short in duration and have relatively little effect on transient engine performance. A new approximation accounting for variations in intake temperature and excess oxygen content of the EGR was more effective at capturing transient emissions trends, but significant differences in magnitudes remained in certain cases indicating that additional sources of variation between transient and steady state performance remain unaccounted for.
Journal Article

Isobutanol as Both Low Reactivity and High Reactivity Fuels with Addition of Di-Tert Butyl Peroxide (DTBP) in RCCI Combustion

2015-04-14
2015-01-0839
Engine experiments and multi-dimensional modeling were used to explore the effects of isobutanol as both the high and low reactivity fuels in Reactivity Controlled Compression Ignition (RCCI) Combustion. Three fuel combinations were examined; EEE/diesel, isobutanol/diesel, and isobutanol/isobutanol+DTBP (di-tert butyl peroxide). In order to assess the relative performance of the fuel combinations of interest under RCCI operation, the engine was operated under conditions representative of typical low temperature combustion (LTC). A net load of 6 bar indicated mean effective pressure (IMEP) was chosen because it provides a wide operable range of equivalence ratios and combustion phasings without excessively high peak pressure rise rates (PPRR). The engine was operated under various intake pressures with global equivalence ratios from 0.28-0.36, and various combustion phasings (defined by 50% mass fraction burned-CA50) from about 1.5 to about 10 deg after top dead center (ATDC).
Technical Paper

Effects of Low Pressure EGR on Transient Air System Performance and Emissions for Low Temperature Diesel Combustion

2011-09-11
2011-24-0062
Low pressure EGR offers greater effectiveness and flexibility for turbocharging and improved heat transfer compared to high pressure EGR systems. These characteristics have been shown to provide potential for further NOx, soot, and fuel consumption reductions in modern diesel engines. One of the drawbacks is reduced transient response capability due to the long EGR path. This can be largely mitigated by combining low pressure and high pressure loops in a hybrid EGR system, but the changes in transient response must be considered in the design of an effective control strategy. The effect of low pressure EGR on transient emissions was evaluated using two different combustion strategies over a variety of transient events. Low pressure EGR was found to significantly lengthen the response time of intake oxygen concentration following a transient event, which can have a substantial effect on emissions formation.
Technical Paper

Effect of E85 on RCCI Performance and Emissions on a Multi-Cylinder Light-Duty Diesel Engine

2012-04-16
2012-01-0376
This paper investigates the effect of E85 on load expansion and FTP modal point emissions indices under reactivity controlled compression ignition (RCCI) operation on a light-duty multi-cylinder diesel engine. A General Motors (GM) 1.9L four-cylinder diesel engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure exhaust gas recirculation (EGR) system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline or E85. Controlling the fuel reactivity in-cylinder by the adjustment of the ratio of premixed low-reactivity fuel (gasoline or E85) to direct injected high reactivity fuel (diesel fuel) has been shown to extend the operating range of high-efficiency clean combustion (HECC) compared to the use of a single fuel alone as in homogeneous charge compression ignition (HCCI) or premixed charge compression ignition (PCCI).
Technical Paper

Efficiency and Emissions Mapping of RCCI in a Light-Duty Diesel Engine

2013-04-08
2013-01-0289
In-cylinder blending of gasoline and diesel to achieve Reactivity Controlled Compression Ignition (RCCI) has been shown to reduce NOX and particulate matter (PM) emissions while maintaining or improving brake thermal efficiency as compared to conventional diesel combustion (CDC). The RCCI concept has an advantage over many advanced combustion strategies in that the fuel reactivity can be tailored to the engine speed and load allowing stable low-temperature combustion to be extended over more of the light-duty drive cycle load range. Varying the premixed gasoline fraction changes the fuel reactivity stratification in the cylinder providing further control of combustion phasing and pressure rise rate than the use of EGR alone. This added control over the combustion process has been shown to allow rapid engine operating point exploration without direct modeling guidance.
Technical Paper

Cyclic Variations and Average Burning Rates in a S. I. Engine

1970-02-01
700064
A method of calculating mass burning rates for a single cylinder spark-ignition combustion engine based on experimentally obtained pressure-time diagrams was used to analyze the effects of fuel-air ratio, engine speed, spark timing, load, and cyclic cylinder pressure variations on mass burning rates and engine output. A study of the effects on mass burning rates by cyclic pressure changes showed the low pressure cycles were initially slow burning cycles. Although large cyclic cylinder pressure variations existed in the data the cyclic variations in imep were relatively small.
Technical Paper

Physical and Chemical Ignition Delay in an Operating Diesel Engine Using the Hot-Motored Technique

1956-01-01
560061
THE present work uses the hot-motored technique to compare a hot, motored pressure diagram with a fired, pressure-time diagram. This technique is applied to a diesel engine to study the small pressure changes after injection and before rapid inflammation. The data resulting from these studies show a relationship between the magnitude of these pressure changes and cetane number of the fuel. Data for selected fuels are presented to show the relative magnitude of different phenomena causing ignition delay.
Technical Paper

Spark Ignition Engine Operation and Design for Minimum Exhaust Emission

1966-02-01
660405
The purpose of the tests conducted on a single-cylinder laboratory engine was to determine the mechanism of combustion that affect exhaust emissions and the relationship of those mechanisms to engine design and operating variables. For the engine used in this study, the exhaust emissions were found to have the following dependence on various engine variables. Hydrocarbon emission was reduced by lean operation, increased manifold pressure, retarded spark, increased exhaust temperature, increased coolant temperature, increased exhaust back pressure, and decreased compression ratio. Carbon monoxide emission was affected by air-fuel ratio and premixing the charge. Oxides of nitrogen (NO + NO2 is called NOx) emission is primarily a function of the O2 available and the peak temperature attained during the cycle. Decreased manifold pressure and retarded spark decrease NOx emission. Hydrocarbons were found to react to some extent in the exhaust port and exhaust system.
Technical Paper

End-Gas Temperatures, Pressures, Reaction Rates, and Knock

1965-02-01
650505
The infrared radiation method of compression and end-gas temperature measurement was applied to the problem of measuring gas temperatures up to the time of knock. Pressure data were taken for each run on a CFR engine with mixtures of isooctane and n-heptane under both knocking and nonknocking conditions. Main engine parameters studied were the intake pressure, intake temperature, and engine speed. The rate and extent of chemical energy release were calculated from the temperature and pressure histories using an energy balance. The computed rates of chemical energy release were correlated to a chain-type kinetic model
Technical Paper

Droplet Vaporization Under Pressure on a Hot Surface

1963-01-01
630149
Life histories of droplets evaporating on a hot plate under pressure were obtained. The curves are similar to those obtained by one investigator at atmospheric pressure but are displaced to higher temperatures at higher pressures. Similarities between boiling heat transfer and the life history curves are pointed out. Also, that the liquid will most probably reach critical pressure and temperature at temperatures existing inside an engine. The effects of reaching the critical temperature on heat transfer and on vaporization and diffusion are discussed.
Technical Paper

The Effect of Injection Pressure on Air Entrainment into Transient Diesel Sprays

1999-03-01
1999-01-0523
The objective of this research was to investigate the effect of injection pressure on air entrainment into transient diesel sprays. The main application of interest was the direct injection diesel engine. Particle Image Velocimetry was used to make measurements of the air entrainment velocities into a spray plume as a function of time and space. A hydraulically actuated, electronically controlled unit injector (HEUI) system was used to supply the fuel into a pressurized spray chamber. The gas chamber density was maintained at 27 kg/m3. The injection pressures that were studied in this current research project were 117.6 MPa and 132.3 MPa. For different injection pressures, during the initial two-thirds of the spray plume there was little difference in the velocities normal to the spray surface. For the last third of the spray plume, the normal velocities were 125% higher for the high injection pressure case.
Technical Paper

A Computer Program for Calculating Properties of Equilibrium Combustion Products with Some Applications to I.C. Engines

1975-02-01
750468
A computer program which rapidly calculates the equilibrium mole fractions and the partial derivatives of the mole fractions with respect to temperature, pressure and equivalence ratio for the products of combustion of any hydrocarbon fuel and air is described. A subroutine is also given which calculates the gas constant, enthalpy, internal energy and the partial derivatives of these with respect to temperature, pressure and equivalence ratio. Some examples of the uses of the programs are also given.
X