Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

High Pressure Multiple Injection Spray Characteristics

In previous work, high injection pressures and multiple injections per engine stroke were shown to be effective at reducing the NOx and particulate emissions of DI Diesel engine combustion [1, 2]. A series of experiments were performed to study the effects of injection pressure, back pressure, and injection strategy on the spray characteristics for multiple injections. An injection system which was capable of multiple injections was used to introduce diesel fuel into a constant volume cold spray chamber. Parallel engine experiments were conducted using the same injectors as in this work [1, 2, 3]. In these engine tests, emissions (NOx and particulate) were measured. The engine experiments were used to develop the injector and chamber operating conditions for this work. The injection pressure was varied up to 90 MPa.
Technical Paper

Effect of Injector Nozzle Hole Size and Number on Spray Characteristics and the Performance of a Heavy Duty D.I. Diesel Engine

An engine emissions and performance study was conducted in conjunction with a series of experiments using a constant volume cold spray chamber. The purpose of the study was to explore the effects of number of holes and hole size on the emissions and performance of a direct injection heavy duty diesel engine. The spray experiments provide insight into the spray parameters and their role in the engine's combustion processes. The fuel system used for both the engine and spray chamber experiments was an electronically controlled, common rail injector. The injector nozzle hole size and number combinations used in the experiments included 225X8 (225 gm diameter holes with 8 holes in the nozzle), 260X6, 260X8, and 30OX6. The engine tests were conducted on an instrumented single cylinder version of the Caterpillar 3400 series heavy duty diesel engine. Data were taken with the engine running at 1600 RPM, 75% load.
Technical Paper

Effects of Injection Pressure and Nozzle Geometry on Spray SMD and D.I. Emissions

A study was performed to correlate the Sauter Mean Diameter (SMD), NOx and particulate emissions of a direct injection diesel engine with various injection pressures and different nozzle geometry. The spray experiments and engine emission tests were conducted in parallel using the same fuel injection system and same operating conditions. With high speed photography and digital image analysis, a light extinction technique was used to obtain the spray characteristics which included spray tip penetration length, spray angle, and overall average SMD for the entire spray. The NOx and particulate emissions were acquired by running the tests on a fully instrumented Caterpillar 3406 heavy duty engine. Experimental results showed that for higher injection pressures, a smaller SMD was observed, i.e. a finer spray was obtained. For this case, a higher NOx and lower particulate resulted.
Technical Paper

A Study on the Effects of Fuel Viscosity and Nozzle Geometry on High Injection Pressure Diesel Spray Characteristics

The objective of this study was to investigate the effects of fuel viscosity and the effects of nozzle inlet configuration on the characteristics of high injection pressure sprays. Three different viscosity fuels were used to reveal the effects of viscosity on the spray characteristics. The effects of nozzle inlet configuration on spray characteristics were studied using two mini-sac six-hole nozzles with different inlet configurations. A common rail injection system was used to introduce the spray at 90 MPa injection pressure into a constant volume chamber pressurized with argon gas. The information on high pressure transient sprays was captured by a high speed movie camera synchronized with a pulsed copper vapor laser. The images were analyzed to obtain the spray characteristics which include spray tip penetration, spray cone angle at two different regions, and overall spray Sauter Mean Diameter (SMD).