Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Optimization of Diesel Engine Operating Parameters Using Neural Networks

Neural networks are useful tools for optimization studies since they are very fast, so that while capturing the accuracy of multi-dimensional CFD calculations or experimental data, they can be run numerous times as required by many optimization techniques. This paper describes how a set of neural networks trained on a multi-dimensional CFD code to predict pressure, temperature, heat flux, torque and emissions, have been used by a genetic algorithm in combination with a hill-climbing type algorithm to optimize operating parameters of a diesel engine over the entire speed-torque map of the engine. The optimized parameters are mass of fuel injected per cycle, shape of the injection profile for dual split injection, start of injection, EGR level and boost pressure. These have been optimized for minimum emissions. Another set of neural networks have been trained to predict the optimized parameters, based on the speed-torque point of the engine.
Technical Paper

Improvement of Neural Network Accuracy for Engine Simulations

Neural networks have been used for engine computations in the recent past. One reason for using neural networks is to capture the accuracy of multi-dimensional CFD calculations or experimental data while saving computational time, so that system simulations can be performed within a reasonable time frame. This paper describes three methods to improve upon neural network predictions. Improvement is demonstrated for in-cylinder pressure predictions in particular. The first method incorporates a physical combustion model within the transfer function of the neural network, so that the network predictions incorporate physical relationships as well as mathematical models to fit the data. The second method shows how partitioning the data into different regimes based on different physical processes, and training different networks for different regimes, improves the accuracy of predictions.
Technical Paper

A New Approach to System Level Soot Modeling

A procedure has been developed to build system level predictive models that incorporate physical laws as well as information derived from experimental data. In particular a soot model was developed, trained and tested using experimental data. It was seen that the model could fit available experimental data given sufficient training time. Future accuracy on data points not encountered during training was estimated and seen to be good. The approach relies on the physical phenomena predicted by an existing system level phenomenological soot model coupled with ‘weights’ which use experimental data to adjust the predicted physical sub-model parameters to fit the data. This approach has developed from attempts at incorporating physical phenomena into neural networks for predicting emissions. Model training uses neural network training concepts.