Refine Your Search

Topic

Search Results

Journal Article

Effect of Mesh Structure in the KIVA-4 Code with a Less Mesh Dependent Spray Model for DI Diesel Engine Simulations

2009-06-15
2009-01-1937
Two different types of mesh used for diesel combustion with the KIVA-4 code are compared. One is a well established conventional KIVA-3 type polar mesh. The other is a non-polar mesh with uniform size throughout the piston bowl so as to reduce the number of cells and to improve the quality of the cell shapes around the cylinder axis which can contain many fuel droplets that affect prediction accuracy and the computational time. This mesh is specialized for the KIVA-4 code which employs an unstructured mesh. To prevent dramatic changes in spray penetration caused by the difference in cell size between the two types of mesh, a recently developed spray model which reduces mesh dependency of the droplet behavior has been implemented. For the ignition and combustion models, the Shell model and characteristic time combustion (CTC) model are employed.
Journal Article

Heavy-Duty RCCI Operation Using Natural Gas and Diesel

2012-04-16
2012-01-0379
Many recent studies have shown that the Reactivity Controlled Compression Ignition (RCCI) combustion strategy can achieve high efficiency with low emissions. However, it has also been revealed that RCCI combustion is difficult at high loads due to its premixed nature. To operate at moderate to high loads with gasoline/diesel dual fuel, high amounts of EGR or an ultra low compression ratio have shown to be required. Considering that both of these approaches inherently lower thermodynamic efficiency, in this study natural gas was utilized as a replacement for gasoline as the low-reactivity fuel. Due to the lower reactivity (i.e., higher octane number) of natural gas compared to gasoline, it was hypothesized to be a better fuel for RCCI combustion, in which a large reactivity gradient between the two fuels is beneficial in controlling the maximum pressure rise rate.
Technical Paper

Modeling of Multicomponent Fuels Using Continuous Distributions with Application to Droplet Evaporation and Sprays

1997-10-01
972882
In multidimensional modeling, fuels have been represented predominantly by single components, such as octane for gasoline. Several bicomponent studies have been performed, but these are still limited in their ability to represent real fuels, which are blends of as many as 300 components. This study outlines a method by which the fuel composition is represented by a distribution function of the fuel molecular weight. This allows a much wider range of compositions to be modeled, and only requires including two additional “species” besides the fuel, namely the mean and second moment of the distribution. This approach has been previously presented but is applied here to multidimensional calculations. Results are presented for single component droplet vaporization for comparison with single component fuel predictions, as well as results for a multicomponent gasoline and a diesel droplet.
Technical Paper

Modeling Multiple Injection and EGR Effects on Diesel Engine Emissions

1997-10-01
972864
A modified version of the multi-dimensional KIVA-II code is used to model the effects of multiple injection schemes and exhaust gas recirculation (EGR) on direct injected diesel engine NOx and soot emissions. The computational results, which also considered double and triple injection schemes and varying EGR amounts, are compared with experimental data obtained from a single cylinder version of a Caterpillar heavy-duty truck engine. The study is done at high load (75% of peak torque at 1600 rpm) where EGR is known to produce unacceptable increases in soot (particulate). The effect of soot and spray model formulations are considered. This includes a new spray model based on Rayleigh-Taylor instabilities for liquid breakup. A soot oxidation model that accounts for turbulent mixing and kinetic effects were found to give accurate results. The results showed excellent agreement between predicted and measured in-cylinder pressure, and heat release data for the various cases.
Technical Paper

Two-Color Imaging of In-Cylinder Soot Concentration and Temperature in a Heavy-Duty DI Diesel Engine with Comparison to Multidimensional Modeling for Single and Split Injections

1998-02-23
980524
Two-Color imaging optics were developed and used to observe soot emission processes in a modern heavy-duty diesel engine. The engine was equipped with a common rail, electronically-controlled, high-pressure fuel injection system that is capable of up to four injection pulses per engine cycle. The engine was instrumented with an endoscope system for optical access for the combustion visualization. Multidimensional combustion and soot modeling results were used for comparisons to enhance the understanding and interpretation of the experimental data. Good agreement between computed and measured cylinder pressures, heat release and soot and NOx emissions was achieved. In addition, good qualitative agreement was found between in-cylinder soot concentration (KL) and temperature fields obtained from the endoscope images and those obtained from the multidimensional modeling.
Technical Paper

Numerical Predictions of Diesel Flame Lift-off Length and Soot Distributions under Low Temperature Combustion Conditions

2008-04-14
2008-01-1331
The lift-off length plays a significant role in spray combustion as it influences the air entrainment upstream of the lift-off location and hence the soot formation. Accurate prediction of lift-off length thus becomes a prerequisite for accurate soot prediction in lifted flames. In the present study, KIVA-3v coupled with CHEMKIN, as developed at the Engine Research Center (ERC), is used as the CFD model. Experimental data from the Sandia National Labs. is used for validating the model predictions of n-heptane lift-off lengths and soot formation details in a constant volume combustion chamber. It is seen that the model predictions, in terms of lift-off length and soot mass, agree well with the experimental results for low ambient density (14.8 kg/m3) cases with different EGR rates (21% O2 - 8% O2). However, for high density cases (30 kg/m3) with different EGR rates (15% O2 - 8% O2) disagreements were found.
Technical Paper

Operating a Heavy-Duty Direct-Injection Compression-Ignition Engine with Gasoline for Low Emissions

2009-04-20
2009-01-1442
A study of partially premixed combustion (PPC) with non-oxygenated 91 pump octane number1 (PON) commercially available gasoline was performed using a heavy-duty (HD) compression-ignition (CI) 2.44 l Caterpillar 3401E single-cylinder oil test engine (SCOTE). The experimental conditions selected were a net indicated mean effective pressure (IMEP) of 11.5 bar, an engine speed of 1300 rev/min, an intake temperature of 40°C with intake and exhaust pressures of 200 and 207 kPa, respectively. The baseline case for all studies presented had 0% exhaust gas recirculation (EGR), used a dual injection strategy a -137 deg ATDC pilot SOI and a -6 deg ATDC main start-of-injection (SOI) timing with a 30/70% pilot/main fuel split for a total of 5.3 kg/h fueling (equating to approximately 50% load). Combustion and emissions characteristics were explored relative to the baseline case by sweeping main and pilot SOI timings, injection split fuel percentage, intake pressure, load and EGR levels.
Technical Paper

Effects of Alternative Fuels and Intake Port Geometry on HSDI Diesel Engine Performance and Emissions

2001-03-05
2001-01-0647
This research explored methods to reduce regulated emissions in a small-bore, direct-injection diesel engine. Swirl was used to influence mixing of the spray plumes, and alternative fuels were used to study the effects of oxygenated and water microemulsion diesel fuels on emissions. Air/fuel mixing enhancement was achieved in the running engine by blocking off a percentage of one of the two intake ports. The swirl was characterized at steady-state conditions with a flowbench and swirl meter. Swirl ratios of 1.85, 2.70, and 3.29 were studied in the engine tests at full load with engine speeds of 1303, 1757, and 1906 rev/min. Increased swirl was shown to have negative effects on emissions due to plume-to-plume interactions. Blends of No. 2 diesel and biodiesel were used to investigate the presence of oxygen in the fuel and its effects on regulated emissions. Pure No. 2 diesel fuel, a 15% and a 30% biodiesel blend (by weight) were used.
Technical Paper

Experiments and CFD Modeling of Direct Injection Gasoline HCCI Engine Combustion

2002-06-03
2002-01-1925
The present study investigated HCCI combustion in a heavy-duty diesel engine both experimentally and numerically. The engine was equipped with a hollow-cone pressure-swirl injector using gasoline direct injection. Characteristics of HCCI combustion were obtained by very early injection with a heated intake charge. Experimental results showed an increase in NOx emission and a decrease in UHC as the injection timing was retarded. It was also found that optimization can be achieved by controlling the intake temperature together with the start-of-injection timing. The experiments were modeled by using an engine CFD code with detailed chemistry. The CHEMKIN code was implemented into KIVA-3V such that the chemistry and flow solutions were coupled. The model predicted ignition timing, cylinder pressure, and heat release rates reasonably well. The NOx emissions were found to increase as the injection timing was retarded, in agreement with experimental results.
Technical Paper

Experimental Investigation of Direct Injection-Gasoline for Premixed Compression Ignited Combustion Phasing Control

2002-03-04
2002-01-0418
A direct injection-gasoline (DI-G) system was applied to a heavy-duty diesel-type engine to study the effects of charge stratification on the performance of premixed compression ignited combustion. The effects of the fuel injection parameters on combustion phasing were of primary interest. The simultaneous effects of the fuel stratification on Unburned Hydrocarbon (UHC), Oxides of Nitrogen (NOx), Carbon Monoxide (CO), and smoke emissions were also measured. Engine tests were conducted with altered injection parameters covering the entire load range of normally aspirated Homogeneous Charge Compression Ignited (HCCI) combustion. Combustion phasing tests were also conducted at several engine speeds to evaluate its effects on a fuel stratification strategy.
Technical Paper

Investigation of Hydrocarbon Emissions from a Direct Injection-Gasoline Premixed Charge Compression Ignited Engine

2002-03-04
2002-01-0419
The causes of Unburned Hydrocarbon (UHC) emissions from a premixed compression ignited engine were investigated for both homogeneous and stratified charge conditions. A fast response Flame Ionization Detector (fast FID) was used to provide cycle-resolved UHC exhaust emission measurements. These fast FID UHC measurements were coupled with numerical flow simulation results to provide quantitative and qualitative insight into the sources of UHC emissions. The combined results were used to evaluate the effects of engine load, local gas temperatures, fuel stratification, and crevice quenching on UHC emissions.
Technical Paper

Simultaneous Reduction of Soot and NOX Emissions by Means of the HCPC Concept: Complying with the Heavy Duty EURO 6 Limits without Aftertreatment System

2013-09-08
2013-24-0093
Due to concerns regarding pollutant and CO2 emissions, advanced combustion modes that can simultaneously reduce exhaust emissions and improve thermal efficiency have been widely investigated. The main characteristic of the new combustion strategies, such as HCCI and LTC, is that the formation of a homogenous mixture or a controllable stratified mixture is required prior to ignition. The major issue with these approaches is the lack of a direct method for the control of ignition timing and combustion rate, which can be only indirectly controlled using high EGR rates and/or lean mixtures. Homogeneous Charge Progressive Combustion (HCPC) is based on the split-cycle principle. Intake and compression phases are performed in a reciprocating external compressor, which drives the air into the combustor cylinder during the combustion process, through a transfer duct. A transfer valve is positioned between the compressor cylinder and the transfer duct.
Technical Paper

The Effect of Swirl Ratio and Fuel Injection Parameters on CO Emission and Fuel Conversion Efficiency for High-Dilution, Low-Temperature Combustion in an Automotive Diesel Engine

2006-04-03
2006-01-0197
Engine-out CO emission and fuel conversion efficiency were measured in a highly-dilute, low-temperature diesel combustion regime over a swirl ratio range of 1.44-7.12 and a wide range of injection timing. At fixed injection timing, an optimal swirl ratio for minimum CO emission and fuel consumption was found. At fixed swirl ratio, CO emission and fuel consumption generally decreased as injection timing was advanced. Moreover, a sudden decrease in CO emission was observed at early injection timings. Multi-dimensional numerical simulations, pressure-based measurements of ignition delay and apparent heat release, estimates of peak flame temperature, imaging of natural combustion luminosity and spray/wall interactions, and Laser Doppler Velocimeter (LDV) measurements of in-cylinder turbulence levels are employed to clarify the sources of the observed behavior.
Technical Paper

Modelling the Influence of Fuel Injection Parameters on Diesel Engine Emissions

1998-02-23
980789
Rate shaping of the fuel injection process is known to significantly impact emissions production in diesel engines. To demonstrate the ability of multidimensional engine modeling to quantify and explain the effect of rate shaping and injection duration, three injection profiles typical of common diesel fuel injection systems were investigated for three injection durations and injection timings. The present study uses an improved version of the KIVA-II engine simulation code employing the characteristic time combustion model, the Kelvin-Helmholtz and the Rayleigh-Taylor spray atomization mechanisms, the extended Zeldovich thermal NOx production model, and a single species soot model.
Technical Paper

Progress in Diesel Engine Intake Flow and Combustion Modeling

1993-09-01
932458
The three-dimensional computer code, KIVA, is being modified to include state-of-the-art submodels for diesel engine flow and combustion. Improved and/or new submodels which have already been implemented are: wall heat transfer with unsteadiness and compressibility, laminar-turbulent characteristic time combustion with unburned HC and Zeldo'vich NOx, and spray/wall impingement with rebounding and sliding drops. Progress on the implementation of improved spray drop drag and drop breakup models, the formulation and testing of a multistep kinetics ignition model and preliminary soot modeling results are described. In addition, the use of a block structured version of KIVA to model the intake flow process is described. A grid generation scheme has been developed for modeling realistic (complex) engine geometries, and initial computations have been made of intake flow in the manifold and combustion chamber of a two-intake-valve engine.
Technical Paper

The Effects of Split Injection and Swirl on a HSDI Diesel Engine Equipped with a Common Rail Injection System

2003-03-03
2003-01-0349
To overcome the trade-off between NOx and particulate emissions for future diesel vehicles and engines it is necessary to seek methods to lower pollutant emissions. The desired simultaneous improvement in fuel efficiency for future DI (Direct Injection) diesels is also a difficult challenge due to the combustion modifications that will be required to meet the exhaust emission mandates. This study demonstrates the emission reduction capability of split injections, EGR (Exhaust Gas Recirculation), and other parameters on a High Speed Direct Injection (HSDI) diesel engine equipped with a common rail injection system using an RSM (Response Surface Method) optimization method. The optimizations were conducted at 1757 rev/min, 45% load. Six factors were considered for the optimization, namely the EGR rate, SOI (Start of Injection), intake boost pressure, and injection pressure, the percentage of fuel in the first injection, and the dwell between injections.
Technical Paper

Modeling the Effects of Fuel Injection Characteristics on Diesel Engine Soot and NOx Emissions

1994-03-01
940523
The three-dimensional KIVA code has been used to study the effects of injection pressure and split injections on diesel engine performance and soot and NOx emissions. The code has been updated with state-of-the-art submodels including: a wave breakup atomization model, drop drag with drop distortion, spray/wall interaction with sliding, rebounding, and breaking-up drops, multistep kinetics ignition and laminar-turbulent characteristic time combustion, wall heat transfer with unsteadiness and compressibility, Zeldovich NOx formation, and soot formation with Nagle Strickland-Constable oxidation. The computational results are compared with experimental data from a single-cylinder Caterpillar research engine equipped with a high-pressure, electronically-controlled fuel injection system, a full-dilution tunnel for soot measurements, and gaseous emissions instrumentation.
Technical Paper

Reducing Particulate and NOx Emissions by Using Multiple Injections in a Heavy Duty D.I. Diesel Engine

1994-03-01
940897
An experimental study has been completed which evaluated the effectiveness of using double, triple and rate shaped injections to simultaneously reduce particulate and NOx emissions. The experiments were done using a single cylinder version of a Caterpillar 3406 heavy duty D.I. diesel engine. The fuel system used was a common rail, electronically controlled injector that allowed flexibility in both the number and duration of injections per cycle. Injection timing was varied for each injection scheme to evaluate the particulate vs. NOx tradeoff and fuel consumption. Tests were done at 1600 rpm using engine load conditions of 25% and 75% of maximum torque. The results indicate that a double injection with a significantly long delay between injections reduced particulate by as much as a factor of three over a single injection at 75% load with no increase in NOx. Double injections with a smaller dwell gave less improvement in particulate and NOx at 75% load.
Technical Paper

Measurement of the Effect of Injection Rate and Split Injections on Diesel Engine Soot and NOx Emissions

1994-03-01
940668
This study was conducted to develop an understanding of how rate-shaped and split injections can affect the soot and NOx emissions of a heavy-duty diesel engine. The tests were performed on a single cylinder version of the Caterpillar 3406 production engine, modified to accept an electronically-controlled, high-pressure common-rail injection system that offers a very high degree of flexibility in injection timing, split injections, and rate shaping of the initial injection. The engine was instrumented for particulate measurements with a full dilution tunnel, and CO, CO2 and NOx emission meters. Cylinder pressure was used to study heat release rates, and the response to changes in the injection scheme. The results show that rate-shaped injection, when optimized for lowest BSFC, does not appreciably affect pressure rise or peak cylinder gas pressures.
Technical Paper

Toward Predictive Modeling of Diesel Engine Intake Flow, Combustion and Emissions

1994-10-01
941897
The development of analytic models of diesel engine flow, combustion and subprocesses is described. The models are intended for use as design tools by industry for the prediction of engine performance and emissions to help reduce engine development time and costs. Part of the research program includes performing engine experiments to provide validation data for the models. The experiments are performed on a single-cylinder version of the Caterpillar 3406 engine that is equipped with state-of-the-art high pressure electronic fuel injection and emissions instrumentation. In-cylinder gas velocity and gas temperature measurements have also been made to characterize the flows in the engine.
X