Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Engine Control Strategy for a Series Hybrid Electric Vehicle Incorporating Load-Leveling and Computer Controlled Energy Management

1996-02-01
960230
This paper identifies important engine, alternator and battery characteristics needed for determining an appropriate engine control strategy for a series hybrid electric vehicle Examination of these characteristics indicates that a load-leveling strategy applied to the small engine will provide better fuel economy than a power-tracking scheme An automatic energy management strategy is devised whereby a computer controller determines the engine-alternator turn-on and turn-off conditions and controls the engine-alternator autonomously Battery state of charge is determined from battery voltage and current measurements Experimental results of the system's performance in a test vehicle during city driving are presented
Technical Paper

Initial Design and Refinement of a High-Efficiency Electric Drivetrain for a Zero-Emissions Snowmobile

2009-11-03
2009-32-0108
The University of Wisconsin - Madison Clean Snowmobile team has designed, constructed and now refined an electric snowmobile with 40 km (24 mi) range and acceleration comparable to a 75 kW (100 hp) internal-combustion-powered snowmobile. Starting with a Polaris IQ Fusion chassis, a direct-drive chain-case was engineered to couple a General Motors EV1 copper-bar rotor AC induction electric motor to the track drive shaft. The battery pack uses 104 28 V, 2.8 A-hr Lithium-Ion battery modules supplied by Milwaukee Tool to store 8.2 kW-hr of energy at a nominal voltage of 364 V. Power is transmitted to the electric motor via an Azure Dynamics DMOC445LLC motor controller. All of the components fit within the original sled envelope, leading to a vehicle with conventional appearance and a total mass of 313 kg (690 lb). The vehicle, dubbed the BuckEV, accelerates to 150 m (500 ft) in 6.9 seconds and has a top speed of 122 km/hr (76 mph) with a pass-by sound level of 55 dB.
Technical Paper

Optimization and Testing of a Through the Road Parallel, Hybrid-Electric, Crossover Sports Utility Vehicle

2009-04-20
2009-01-1318
The University of Wisconsin Hybrid Vehicle Team has implemented and optimized a four-wheel drive, charge sustaining, split-parallel hybrid-electric crossover vehicle for entry into the 2008 ChallengeX competition. This four year project is based on a 2005 Chevrolet Equinox platform. Fuel economy, greenhouse gas impact (GHGI), acceleration, component packaging and consumer acceptability were appropriately weighted to determine powertrain component selections. Wisconsin's Equinox, nicknamed the Moovada, is a split-parallel hybrid utilizing a General Motors (GM) 110 kW 1.9L CDTi (common rail diesel turbo injection) engine coupled to an F40 6-speed manual transmission. The rear axle is powered by a SiemensVDO induction motor/gearbox power-limited to 65 kW by a 40-module (288 volts nominal) Johnson Controls Inc, nickel-metal hydride battery pack.
Technical Paper

Integration of Hybrid-Electric Strategy to Enhance Clean Snowmobile Performance

2006-11-13
2006-32-0048
The University of Wisconsin-Madison Snowmobile Team designed and constructed a hybrid-electric snowmobile for the 2005 Society of Automotive Engineers' Clean Snowmobile Challenge. Built on a 2003 cross-country touring chassis, this machine features a 784 cc fuel-injected four-stroke engine in parallel with a 48 V electric golf cart motor. The 12 kg electric motor increases powertrain torque up to 25% during acceleration and recharges the snowmobile's battery pack during steady-state operation. Air pollution from the gasoline engine is reduced to levels far below current best available technology in the snowmobile industry. The four-stroke engine's closed-loop EFI system maintains stoichiometric combustion while dual three-way catalysts reduce NOx, HC and CO emissions by up to 94% from stock. In addition to the use of three way catalysts, the fuel injection strategy has been modified to further reduce engine emissions from the levels measured in the CSC 2004 competition.
Technical Paper

Design and Testing of a Prototype Hybrid-Electric Split-Parallel Crossover Sports Utility Vehicle

2007-04-16
2007-01-1068
The University of Wisconsin - Madison Hybrid Vehicle Team has designed, fabricated, tested and optimized a four-wheel drive, charge sustaining, split-parallel hybrid-electric crossover vehicle for entry into the 2006 Challenge X competition. This multi-year project is based on a 2005 Chevrolet Equinox platform. Trade-offs in fuel economy, greenhouse gas impact (GHGI), acceleration, component packaging and consumer acceptability were weighed to establish Wisconsin's Vehicle Technical Specifications (VTS). Wisconsin's Equinox, nicknamed the Moovada, utilizes a General Motors (GM) 110 kW 1.9 L CIDI engine coupled to GM's 6-speed F40 transmission. The rear axle is powered by a 65 kW Ballard induction motor/gearbox powered from a 44-module (317 volts nominal) Johnson Controls Inc., nickel-metal hydride hybrid battery pack. It includes a newly developed proprietary battery management algorithm which broadcasts the battery's state of charge onto the CAN network.
X