Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Performance Evaluation of the Commercial Plant Biotechnology Facility

The demand for highly flexible manipulation of plant growth generations, modification of specific plant processes, and genetically engineered crop varieties in a controlled environment has led to the development of a Commercial Plant Biotechnology Facility (CPBF). The CPBF is a quad-middeck locker playload to be mounted in the EXPRESS Rack that will be installed in the International Space Station (ISS). The CPBF integrates proven ASTROCULTURE” technologies, state-of-the-art control software, and fault tolerance and recovery technologies together to increase overall system efficiency, reliability, robustness, flexibility, and user friendliness. The CPBF provides a large plant growing volume for the support of commercial plant biotechnology studies and/or applications for long time plant research in a reduced gravity environment.
Technical Paper

Humidity and Temperature Control in the ASTROCULTURE™ Flight Experiment

The ASTROCULTURE™ (ASC) middeck flight experiment series was developed to test subsystems required to grow plants in reduced gravity, with the goal of developing a plant growth unit suitable for conducting quality biological research in microgravity. Previous Space Shuttle flights (STS-50 and STS-57) have successfully demonstrated the ability to control water movement through a particulate rooting matrix in microgravity and the ability of LED lighting systems to provide high levels of irradiance without excessive heat build-up in microgravity. The humidity and temperature control system used in the middeck flight unit is described in this paper. The system controls air flow and provides dehumidification, humidification, and condensate recovery for a plant growth chamber volume of 1450 cm3.
Technical Paper

Hardware Implementation Details and Test Results for a High-Bandwith, Hydrostatic Transient Engine Dynamometer System

Transient operation of automobile engines is known to contribute significantly to regulated exhaust emissions, and is also an area of drivability concerns. Furthermore, many on-board diagnostic algorithms do not perform well during transient operation and are often temporarily disabled to avoid problems. The inability to quickly and repeatedly test engines during transient conditions in a laboratory setting limits researchers and development engineers ability to produce more effective and robust algorithms to lower vehicle emissions. To meet this need, members of the Powertrain Control Research Laboratory (PCRL) at the University of Wisconsin-Madison have developed a high-bandwidth, hydrostatic dynamometer system that will enable researchers to explore transient characteristics of engines and powertrains in the laboratory.
Technical Paper

Direct Calibration of LIF Measurements of the Oil Film Thickness Using the Capacitance Technique

A direct calibration has been performed on laser-induced fluorescence measurements of the oil film in a single cylinder air-cooled research engine by simultaneously measuring the minimum oil film thickness by the capacitance technique. At the minimum oil film thickness the capacitance technique provides an accurate measure of the ring-wall distance, and this value is used as a reference for the photomultiplier voltage, giving a calibration coefficient. This calibration coefficient directly accounts for the effect of temperature on the fluorescent properties of the constituents of the oil which are photoactive. The inability to accurately know the temperature of the oil has limited the utility of off-engine calibration techniques. Data are presented for the engine under motoring conditions at speeds from 800 - 2400 rpm and under varying throttle positions.
Technical Paper

Future Developments in Forage Harvesting Machinery and Processing

Forage harvesting, processing and handling equipment research is currently underway which will improve commodity quality, produce “value -added” products from forages, reduce energy and labor requirements of the equipment and improve forage marketability. Technologies are described which could increase forage quality and value by removing it from the field sooner after it is mowed to minimize the risk of weather damage. Mechanisms and management strategies for reducing the labor and energy required for field processing and for improving the marketability of forages are also described.
Technical Paper

Design and Construction of a High-Bandwidth Hydrostatic Dynamometer

A hydrostatic dynamometer capable of accurately controlling the speed and torque of an engine has been designed and constructed. The thrust of this work is not only to build a better dynamometer, it is the first step in creating a system for laboratory simulation of the actual load environment of engines and powertrains. This paper presents the design, construction, and evaluation of a hydrostatic dynamometer. The evaluation includes speed and torque limits, and bandwidth of the dynamometer. Also, the dynamometer is compared with those in common use, and the feasibility of accurately reproducing the engine or powertrain load environments are assessed. This is the first phase of a development program; future research is discussed.
Technical Paper

Using Dynamic Modular Diesel Engine Models To Understand System Interactions and Performance

This paper reviews the engine modeling program in the Powertrain Control Research Laboratory at the University of Wisconsin-Madison, focuses on simulation results obtained from a complete modular turbocharged diesel engine dynamic model developed in this lab, and suggests ways that dynamic engine system models can be used in the design process. It examines the dynamic responses and interactions between various components in the engine system, looks at how these components affect the overall performance of the system in transient and steady state operation.
Journal Article

Replicating Instantaneous Cylinder Mass Flow Rate with Parallel Continuously and Discretely Actuating Intake Plenum Valves

The focus of this paper is to discuss the modeling and control of intake plenum pressure on the Powertrain Control Research Laboratory's (PCRL) Single-Cylinder Engine (SCE) transient test system using a patented device known as the Intake Air Simulator (IAS), which dynamically controls the intake plenum pressure, and, subsequently, the instantaneous airflow into the cylinder. The IAS exists as just one of many devices that the PCRL uses to control the dynamic boundary conditions of its SCE transient test system to make it “think” and operate as though it were part of a Multi-Cylinder Engine (MCE) test system. The model described in this paper will be used to design a second generation of this device that utilizes both continuously and discretely actuating valves working in parallel.
Technical Paper

Autonomous Vehicles in the Cyberspace: Accelerating Testing via Computer Simulation

We present an approach in which an open-source software infrastructure is used for testing the behavior of autonomous vehicles through computer simulation. This software infrastructure is called CAVE, from Connected Autonomous Vehicle Emulator. As a software platform that allows rapid, low-cost and risk-free testing of novel designs, methods and software components, CAVE accelerates and democratizes research and development activities in the field of autonomous navigation.