Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Investigation of Platinum and Cerium from Use of a FBC

Fuel-borne catalysts (FBC) have demonstrated efficacy as an important strategy for integrated diesel emission control. The research summarized herein provides new methodologies for the characterization of engine-out speciated emissions. These analytical tools provide new insights on the mode of action and chemical forms of metal emissions arising from use of a platinum and cerium based commercial FBC, both with and without a catalyzed diesel particulate filter. Characterization efforts addressed metal solubility (water, methanol and dichloromethane) and particle size and charge of the target species in the water and solvent extracts. Platinum and cerium species were quantified using state-of-the-art high resolution plasma mass spectrometry. Liquid-chromatography-triple quad mass spectrometry techniques were developed to quantify potential parent Pt-FBC in the PM extracts. Speciation was examined for emissions from cold and warm engine cycles collected from an engine dynamometer.
Technical Paper

Detailed Diesel Exhaust Particulate Characterization and DPF Regeneration Behavior Measurements for Two Different Regeneration Systems

Three distinct types of diesel particulate matter (PM) are generated in selected engine operating conditions of a single-cylinder heavy-duty diesel engine. The three types of PM are trapped using typical Cordierite diesel particulate filters (DPF) with different washcoat formulations and a commercial Silicon-Carbide DPF. Two systems, an external electric furnace and an in-situ burner, were used for regeneration. Furnace regeneration experiments allow the collected PM to be classified into two categories depending on oxidation mechanism: PM that is affected by the catalyst and PM that is oxidized by a purely thermal mechanism. The two PM categories prove to contribute differently to pressure drop and transient filtration efficiency during in-situ regeneration.
Technical Paper

Detailed Diesel Exhaust Particulate Characterization and Real-Time DPF Filtration Efficiency Measurements During PM Filling Process

An experimental study was performed to investigate diesel particulate filter (DPF) performance during filtration with the use of real-time measurement equipment. Three operating conditions of a single-cylinder 2.3-liter D.I. heavy-duty diesel engine were selected to generate distinct types of diesel particulate matter (PM) in terms of chemical composition, concentration, and size distribution. Four substrates, with a range of geometric and physical parameters, were studied to observe the effect on filtration characteristics. Real-time filtration performance indicators such as pressure drop and filtration efficiency were investigated using real-time PM size distribution and a mass analyzer. Types of filtration efficiency included: mass-based, number-based, and fractional (based on particle diameter). In addition, time integrated measurements were taken with a Rupprecht & Patashnick Tapered Element Oscillating Microbalance (TEOM), Teflon and quartz filters.
Technical Paper

A New Approach to System Level Soot Modeling

A procedure has been developed to build system level predictive models that incorporate physical laws as well as information derived from experimental data. In particular a soot model was developed, trained and tested using experimental data. It was seen that the model could fit available experimental data given sufficient training time. Future accuracy on data points not encountered during training was estimated and seen to be good. The approach relies on the physical phenomena predicted by an existing system level phenomenological soot model coupled with ‘weights’ which use experimental data to adjust the predicted physical sub-model parameters to fit the data. This approach has developed from attempts at incorporating physical phenomena into neural networks for predicting emissions. Model training uses neural network training concepts.
Journal Article

Detailed Effects of a Diesel Particulate Filter on the Reduction of Chemical Species Emissions

Diesel particulate filters are designed to reduce the mass emissions of diesel particulate matter and have been proven to be effective in this respect. Not much is known, however, about their effects on other unregulated chemical species. This study utilized source dilution sampling techniques to evaluate the effects of a catalyzed diesel particulate filter on a wide spectrum of chemical emissions from a heavy-duty diesel engine. The species analyzed included both criteria and unregulated compounds such as particulate matter (PM), carbon monoxide (CO), hydrocarbons (HC), inorganic ions, trace metallic compounds, elemental and organic carbon (EC and OC), polycyclic aromatic hydrocarbons (PAHs), and other organic compounds. Results showed a significant reduction for the emissions of PM mass, CO, HC, metals, EC, OC, and PAHs.