Refine Your Search


Search Results

Viewing 1 to 13 of 13
Technical Paper

Potato Tuber Formation and Metabolism in the Spaceflight Environment

Five potato (Solanum tuberosum L.) leaf cuttings were flown on STS-73 in late October, 1995 as part of the 16-day USML-2 mission. Pre-flight studies were conducted to study tuber growth, determine carbohydrate concentrations and examine the developing starch grains within the tuber. In these tests, tubers attained a fresh weight of 1.4 g tuber-1 after 13 days. Tuber fresh mass was significantly correlated to tuber diameter. Greater than 60% of the tuber dry mass was starch and the starch grains varied in size from 2 to 40 mm in the long axis. For the flight experiment, cuttings were obtained from seven-week-old Norland potato plants, kept at 5°C for 12 hours then planted into arcillite in the ASTROCULTURE™ flight hardware. The flight package was loaded on-board the orbiter 22 hours prior to launch.
Technical Paper

Near Wall Interaction in Spray Impingement

The hydrodynamic details of droplet-droplet and droplet-liquid film interactions on solid surfaces are believed to have a significant role in spray impingement phenomena, yet details of this interaction have not been clearly identified. The interaction among the droplets during impact affects their residence time on the surface, spreading, and droplet and liquid film stability. After impact, droplet interactions affect droplet collisions, coalescence and liquid splashing, This interaction affects secondary atomization and the droplet dispersion characteristics of the impingement process. In this study, details of droplet-droplet and droplet-liquid film interactions in solid surface impingement have been visualized using high speed photography. The effects of these interactions on secondary atomization and droplet dispersion have been quantified.
Technical Paper

Emission Formation Mechanisms in a Two-Stroke Direct-Injection Engine

Engine tests were conducted to study the effect of fuel-air mixture preparation on the combustion and emission performance of a two-stroke direct-injection engine. The in-cylinder mixture distribution was altered by changing the injection system, injection timing, and by substituting the air in an air-assisted injector with nitrogen. Two injection systems which produce significantly different mixtures were investigated; an air-assisted injector with a highly atomized spray, and a single-fluid high pressure-swirl injector with a dense penetrating spray. The engine was operated at overall A/F ratios of 30:1, where stratification was necessary to ensure stable combustion; and at 20:1 and 15:1 where it was possible to operate in a nearly homogeneous mode. Moderate engine speeds and loads were investigated. The effects of the burning-zone A/F ratio were isolated by using nitrogen as the working fluid in the air-assist injector.
Technical Paper

SMURRF - A Robotic Facility for Space Based Science Operations

Automation of space-based scientific operations minimizes the crew time needs for experiments while increasing the efficiency and quality of science operations. ORBITEC has completed the development of a space qualifiable prototype of a Shared Multi-Use Remote Robotics Facility (SMURRF). SMURRF, sized for a Middeck Locker (MDL) application, provides a simple, flexible, and functional manipulator to assist space operations, in manned or unmanned modes, carried out in lockers or racks onboard the Space Shuttle and the International Space Station (ISS). It will be primarily operated in an automated mode with additional remote command/control capability from the ground or from space. Ground trials have demonstrated that many operations can be autonomously performed without the presence of a human operator.
Technical Paper

Control of Grasping Force in Teleoperation Using Model Reference Adaptive Approach

The adaptation to changes in human operator dynamics and changes in working environment dynamics can be an important issue in designing high performance telerobotic systems. This paper describes an approach to force control in telerobotic hand systems in which model reference adaptive control techniques are used to adapt to changes in human operator and working environment dynamics. The techniques have been applied to force-reflective control of a single degree-of-freedom telerobotic gripper system at Wisconsin Center for Space Automation and Robotics (WCSAR). This adaptive gripping system is described in the paper along with results of experiments with human subjects in which the performance of the adaptive system was analysed and compared to the performance of a conventional non-adaptive system. These experiments emphasized adaptation to changes in compliance of gripped objects and adaptation to the on-set of human operator fatigue.
Technical Paper

Modeling Fuel Film Formation and Wall Interaction in Diesel Engines

A fuel film model has been developed and implemented into the KIVA-II code to help account for fuel distribution during combustion in diesel engines. Spray-wall interaction and spray-film interaction are also incorporated into the model. The model simulates thin fuel film flow on solid surfaces of arbitrary configuration. This is achieved by solving the continuity and momentum equations for the two dimensional film that flows over a three dimensional surface. The major physical effects considered in the model include mass and momentum contributions to the film due to spray drop impingement, splashing effects, various shear forces, piston acceleration, and dynamic pressure effects. In order to adequately represent the drop interaction process, impingement regimes and post-impingement behavior have been modeled using experimental data and mass, momentum and energy conservation constraints. The regimes modeled for spray-film interaction are stick, rebound, spread, and splash.
Technical Paper

Feature Extraction from Non-Linear Geometric Models in Design-for-Manufacturing

Automatic manufacturability analysis of injection moldings, sheet metal castings, stampings, forgings, etc., using knowledge-based heuristics depends on shape features, which are abstractions of the three dimensional (3D) geometric model of the parts. Conventional CAD systems do not explicitly contain shape feature information, therefore such information needs to be extracted from them. So far, extraction of shape features has been restricted to models with simple geometric shapes such as planar, cylindrical or conical shapes. Extending shape feature extraction to non-linear geometric models will allow Design For Manufacturability (DFM) analysis of non-linear models. This paper presents an approach to extract features from non-linear geometric models. The approach is based on abstract geometric entities called C-loops. The formation of a C-loop depends on a geometric entity called a silhouette. The C-loops are derived from the silhouette boundaries of an object.
Technical Paper

Studying the Roles of Kinetics and Turbulence in the Simulation of Diesel Combustion by Means of an Extended Characteristic-Time-Model

A study was performed that takes into account both turbulence and chemical kinetic effects in the numerical simulation of diesel engine combustion in order to better understand the importance of their respective roles at changing operating conditions. An approach was developed which combines the simplicity and low computational and storage requests of the laminar-and-turbulent characteristic-time model with a detailed combustion chemistry model based on well-known simplified mechanisms. Assuming appropriate simplifications such as steady state or equilibrium for most of the radicals and intermediate species, the kinetics of hydrocarbons can be described by means of three overall steps. This approach was integrated in the KIVA-II code. The concept was validated and applied to a single-cylinder, heavy-duty engine. The simulation covers a wide range of operating conditions.
Technical Paper

Submerged Electrical Discharges for Water Decontamination and Disinfection

A modular and scalable Dense Medium Plasma Water Purification Reactor was developed, which uses atmospheric-pressure electrical discharges under water to generate highly reactive species to break down organic contaminants and microorganisms. Key benefits of this novel technology include: (i) extremely high efficiency in both decontamination and disinfection; (ii) operating continuously at ambient temperature and pressure; (iii) reducing demands on the containment vessel; and (iv) requiring no consumables. This plasma based technology was developed to replace the catalytic reactor being used in the planned International Space Station Water Processor Assembly.
Technical Paper

Ultrasonic Cavitation Based Casting of Aluminum Matrix Nanocomposites for Automobile Structures

The properties of aluminum alloys reinforced by ceramic nanoparticles (less than 100nm) would be enhanced considerably while the ductility is retained over that of the native alloy. The potential of bulk Al-based metal matrix nano-composites (Al MMNCs) cannot be fully developed for industrial applications unless complex structural Al MMNC components can be fabricated cost effectively, such as by casting. Reliable bulk Al MMNCs cannot be cast unless the nanoparticles can be dispersed and distributed uniformly in molten Al alloys. This paper investigates a high volume production method for high performance aluminum matrix nanocomposites, in particular, the application of high intensity ultrasonic cavitation in mixing and dispersing nano-sized ceramic particles in Al melts to cast bulk Al MMNCs for complex automobile structures. Nano-sized SiC particles have been dispersed in molten aluminum alloy A356 for casting.
Technical Paper

Measurement of Diesel Spray Impingement and Fuel Film Characteristics Using Refractive Index Matching Method

The fuel film thickness resulting from diesel fuel spray impingement was measured in a chamber at conditions representative of early injection timings used for low temperature diesel combustion. The adhered fuel volume and the radial distribution of the film thickness are presented. Fuel was injected normal to the impingement surface at ambient temperatures of 353 K, 426 K and 500 K, with densities of 10 kg/m3 and 25 kg/m3. Two injectors, with nozzle diameters of 100 μm and 120 μm, were investigated. The results show that the fuel film volume was strongly affected by the ambient temperature, but was minimally affected by the ambient density. The peak fuel film thickness and the film radius were found to increase with decreased temperature. The fuel film was found to be circular in shape, with an inner region of nearly constant thickness. The major difference observed with temperature was a decrease in the radial extent of the film.
Technical Paper

PIV Measurements of In-Cylinder Flow in a Four-Stroke Utility Engine and Correlation with Steady Flow Results

Large-scale flows in internal combustion engines directly affect combustion duration and emissions production. These benefits are significant given increasingly stringent emissions and fuel economy requirements. Recent efforts by engine manufacturers to improve in-cylinder flows have focused on the design of specially shaped intake ports. Utility engine manufacturers are limited to simple intake port geometries to reduce the complexity of casting and cost of manufacturing. These constraints create unique flow physics in the engine cylinder in comparison to automotive engines. An experimental study of intake-generated flows was conducted in a four-stroke spark-ignition utility engine. Steady flow and in-cylinder flow measurements were made using three simple intake port geometries at three port orientations. Steady flow measurements were performed to characterize the swirl and tumble-generating capability of the intake ports.
Technical Paper

Reinventing the Internal Combustion (IC) Engine Head and Exhaust Gaskets

This paper describes how a blend of silicon polymers, mixed with the right combination of fillers, enables the production of durable rubber IC engine head and exhaust gaskets. The resin blend, when mixed with glass fiber reinforcement, produces a liquid sealant suitable for exhaust gasket applications. The exhaust sealant and laminate head gaskets were tested on Ford 460 truck engines at Jasper Engine Company and completed more than 5,000 hours of durability testing without incident. Fabric reinforced polymer (FRP) head and exhaust gaskets can be laser cut from molded laminates, creating a ceramic glass-sealed edge. Thermogravimetric scans of typical gasket laminate material reveal an 88%-yield at 1000°C. FRP head gaskets also enable the cost-effective production of multiple spark ignition (MSI) head gaskets.