Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Numerical Simulation and Flame Analysis of Combustion and Knock in a DISI Optically Accessible Research Engine

2017-03-28
2017-01-0555
The increasing limitations in engine emissions and fuel consumption have led researchers to the need to accurately predict combustion and related events in gasoline engines. In particular, knock is one of the most limiting factors for modern SI units, severely hindering thermal efficiency improvements. Modern CFD simulations are becoming an affordable instrument to support experimental practice from the early design to the detailed calibration stage. To this aim, combustion and knock models in RANS formalism provide good time-to-solution trade-off allowing to simulate mean flame front propagation and flame brush geometry, as well as “ensemble average” knock tendency in end-gases. Still, the level of confidence in the use of CFD tools strongly relies on the possibility to validate models and methodologies against experimental measurements.
Technical Paper

Development of a Sectional Soot Model Based Methodology for the Prediction of Soot Engine-Out Emissions in GDI Units

2020-04-14
2020-01-0239
With the aim of identifying technical solutions to lower the particulate matter emissions, the engine research community made a consistent effort to investigate the root causes leading to soot formation. Nowadays, the computational power increase allows the use of advanced soot emissions models in 3D-CFD turbulent reacting flows simulations. However, the adaptation of soot models originally developed for Diesel applications to gasoline direct injection engines is still an ongoing process. A limited number of studies in literature attempted to model soot produced by gasoline direct injection engines, obtaining a qualitative agreement with the experiments. To the authors’ best knowledge, none of the previous studies provided a methodology to quantitatively match particulate matter, particulate number and particle size distribution function measured at the exhaust without a case-by-case soot model tuning.
Technical Paper

CFD Optimization of n-Butanol Mixture Preparation and Combustion in an Research GDI Engine

2017-09-04
2017-24-0063
The recent interest in alternative non-fossil fuels has led researchers to evaluate several alcohol-based formulations. However, one of the main requirements for innovative fuels is to be compatible with existing units’ hardware, so that full replacement or smart flexible-fuel strategies can be smoothly adopted. n-Butanol is considered as a promising candidate to replace commercial gasoline, given its ease of production from bio-mass and its main physical and chemical properties similar to those of Gasoline. The compared behavior of n-butanol and gasoline was analyzed in an optically-accessible DISI engine in a previous paper [1]. CFD simulations explained the main outcomes of the experimental campaign in terms of combustion behavior for two operating conditions. In particular, the first-order role of the slower evaporation rate of n-butanol compared to gasoline was highlighted when the two fuels were operated under the same injection phasing.
X