Refine Your Search

Topic

Author

Search Results

Technical Paper

AlON A-Pillars: Enhancing Passenger Safety and Driver Visibility

2014-04-01
2014-01-0806
With the ever increasing emphasis on vehicle occupant safety, the safety of pedestrians is getting obscured behind the A-pillars that are expanding in order to meet the federal roof crush standards. The serious issue of pillar blind spots poses threats to the pedestrians who easily disappear from driver's field of view. To recognize this blinding danger and design the car around the driver's eye, this paper proposes the implementation of Aluminum Oxynitride marked under name AlON by Surmet Corporation for fabrication of A-pillars that can allow more than 80% visibility through them. AlON is a polycrystalline ceramic with cubic spinel crystal structure and is composed of aluminum, oxygen and nitrogen. With hardness more than 85% than sapphire, its applications range from aerospace to defense purposes which qualify it in terms of strength and thus imply that it can be conveniently used as A-pillars in vehicles. Furthermore, it possesses characteristics of being bonded to metals as well.
Technical Paper

A Fastener Analysis Addressing Various Types of Misfit and Its Damage Life Calculations

2013-09-17
2013-01-2312
In a fastening system when there is a small misalignment of the holes, the holes are enlarged to align the axes and a next size fastener is used to fit the joint. But when the misalignment is large then the enlargement need to be proportionally large. In this case a bushing is press fit onto the hole to handle the fastening. If we press fit a bushing, it generates residual stresses in the panel. These residual stresses reduce the damage life of the components on which the bushings were press fit. In the aircraft engine nacelle components the damage life is very critical in various failure conditions such as fan blade out condition, wind milling and bird strike. It increases the flight time in these events. Here four different case studies were considered to study the damage life of the aircraft components made of Aluminum or composite material.
Technical Paper

Reducing Starting Current for Existing Commercial Vehicle Engines

2015-01-14
2015-26-0042
In present commercial vehicles, the cranking torque required for a heavy duty compression ignition engine is very high. This results in higher durability and reliability requirement of cranking system components and also makes it cumbersome to implement start-stop micro hybrid feature which requires more number of cranking cycles in lifetime. Hence higher capacity starter motor and battery is being used for implementing start-stop feature. However this would result in cost and packaging issues. In order to implement start-stop feature maintaining the same starter motor and battery capacity, the cranking energy demand of the engine needs to be reduced. Studies conducted shows that the major source of breakaway torque is the work done in compression stroke during a starting cycle.
Technical Paper

Design and Development of Variable Valve Actuation (VVA) Mechanism Concept for Multi-Cylinder Engine

2015-01-14
2015-26-0021
The desire for higher fuel economy, improved performance and driveability expectations of customers from engines are gradually increasing along with stringent emission regulations set by the government. Many original engine manufacturing companies are prompted to consider the application of higher function variable valve actuation mechanisms in their next generation vehicles as a solution. The VVA is a generalized term used to describe any mechanism or method that can alter the shape or timing of a valve lift event within an internal combustion engine. The VVA allows lift, duration or timing (in various combinations) of the intake and/or exhaust valves to be changed while the engine is in operation. Engine designers are prompted to consider Variable Valve Actuation (VVA) system because of the inherent compromises with fixed valve events. The major goal of a VVA engine is to control the amount of air inducted into the engine which is a direct measure of torque.
Technical Paper

A Novel Design of Pneumatic Actuator for Camless Engines

2016-04-05
2016-01-0099
The concept of camless engines enables us to optimize the overall engine efficiency and performance, as it provides great flexibility in valve timing and valve displacement. This paper deals with design of camless engines with pneumatic actuator. The main objective is to build a prototype and test its performance at different engine speeds. Also an extensive research on the sensors is done to detect the various sensors that could be used to identify the crankshaft position. Here the features and advantages over conventional engines are discussed. In addition the overview of the camless system in the engine is focused along with the design principle and the components used. The system thus designed is capable of actuating at 1500 rpm and demonstrates the ability of pneumatic actuators to be used in an internal combustion engine with low rpm needs.
Technical Paper

Electro-Pneumatic Shifting System and Gear Control Unit for a Sequential Gearbox

2016-02-01
2016-28-0175
This paper describes the design methodology and algorithm development towards the design of an automatic external gear-shifting and clutch-actuation system for a sequential gearbox with the aim of providing the drivers with easier and an efficient means of shifting gears. Automatically actuated manual transmission system bridges the gap between automatic and manual transmissions which provides the advantages of both type of transmissions. This would ideally leads to faster shifting time and provide significant benefits in the form of electronic-aids like launch control and traction control. Removal of mechanical clutching would reduce fatigue and lead to ergonomic benefit. Based on the benchmarking performed on an easily available ready-to-install aftermarket alternative, options will be considered for the actuating mechanism and the most feasible will be used to develop a shifting system.
Technical Paper

Numerical Prediction of NOx in the Exhaust of a CI Engine Fuelled with Biodiesel Using In-Cylinder Combustion Pressure Based Variables

2016-02-01
2016-28-0153
Alternative fuels for both spark ignition (SI) and compression ignition (CI) engines have become very important owing to increased environmental protection concern, the need to reduce dependency on petroleum and even socioeconomic aspects. An appropriate sustainable fuel alternative has turn out to be a main concern and bio-diesel is one of the sustainable fuels. The path of interest in biodiesel has highlighted its advantages which include decrease in hydrocarbon and particulate matter. Meanwhile its shortcoming includes higher emission of oxides of nitrogen. This work is an attempt to develop a mathematical relationship to predict thermal NOx in CI engine fuelled with neat biodiesel. Attention was focused on using in-cylinder pressure based variables to predict NOx. In cylinder pressure measurement is a valuable tool for the analysis of CI engine combustion, which is used for finding the heat release rate, ignition delay, etc.
Technical Paper

Modelling and Analysis of Variable Displacement Oil Pump for Automobile Applications

2018-07-09
2018-28-0080
The present world persists with a twin crisis of energy consumption and the environmental degradation. Finding a compromise between them provides a breakthrough in the research in energy containments of the engine attachments. Oil pump has role of providing the transmission of oil to other engine parts and acts as the coolant for the moving parts. Conventional oil pump with pressure relief valve is its loss lot of energy in oil re-circulation due to the discharge effect. On contrary, the variable displacement oil pump has an effect on reduction of oil pressure using eccentric ring without having any compromise with the energy consumption. This paper proposes model and experimental methodology of a variable displacement Gerotor oil pump for lubricating the internal combustion engine. This particular unit is performed extremely in terms of rotational speed, delivery pressure and displacement variation.
Technical Paper

Optimization of Process Parameters for Electro Discharge Machining of Al 7075-Al2O3 Nano Composite Using Different Electrode Materials

2018-07-09
2018-28-0093
In the present study, an aluminium based nanocomposite, reinforced with 2 wt. % aluminium oxide (Al2O3) is developed through stir casting method. These hard ceramic particles also influence the material removal rate (MRR), electrode wear rate (EWR) and surface finish (Ra) in an electro-discharge machining (EDM) process. In this work, EDM of Al 7075/2 wt. % Al2O3 nanocomposite is carried out using copper and brass electrodes using Taguchi L18 array. The percentage contribution of each process parameter on the response variables was determined using analysis of variance (ANOVA). Multi-response signal to noise ratio (MRSN) and the optimum combination levels for the input parameters was obtained using Taguchi’s parametric design. MRR and surface roughness are substantially improved when machining is performed at optimized conditions.
Technical Paper

Experimental Study and CFD Analysis of an Aerofoil Structure for Automotive Body Design

2018-07-09
2018-28-0091
A study of an aerofoil structure used for automotive body design is being conducted and an experiment has been performed to determine the lift and drag forces produced by it by varying its Angle of Attack. The NACA0018 and NACA0015 aerofoil with a chord length of 16 cm were used for this study. Then an analysis was done with the help of (CFD) computational fluid dynamics. The results obtained by CFD analysis where compared by the experimental results which was performed on wind tunnel using NACA0018 aerofoil. The results are then presented graphically, showing pressure and velocity distributions lift and drag coefficients for the different cases which will be useful for design of automotive body structures.
Technical Paper

Investigations on the Tensile Properties of Ultrasonic Plastic Welded Components for Automotive Application

2018-07-09
2018-28-0092
The use of thermoplastics in various fields like aerospace, automotive, medical and packaging industries is growing day by day, due to their light weight and compactness. In some instances, the plastic components are required to be welded. In this research study, process parameters used for the ultrasonic welding of thermoplastics which produces highest weld strength for complex use in the above said applications is carried out. Also, the possibilities of welding dissimilar plastics are also tested. Tensile testing of above welded samples fabricated through injection moulding was carried out for all possible welds and the ultimate tensile strength was calculated in each case. Of all the welded specimens, at given parameters like weld time, weld pressure and energy director, it is observed that ultimate tensile strength of ABS (8.89 N/mm2) is highest.
Technical Paper

NOx Control Using Porous Medium Combustion in DI Diesel Engine - An Attempt through Simulation Study

2018-07-09
2018-28-0077
At present, the emissions from an internal combustion engine exhaust is reduced by exhaust after treatment devices. However, after treatment devices like SCR which is used to control NOx, results in additional weight, high costs and rejects toxic gases like ammonia etc. To overcome this problem, a new combustion technique should be developed to improve the primary combustion processes inside the combustion chamber itself to reduce these exhaust gas emissions. This work presents the results of such a technique that is applicable to direct injection, Diesel engines. The technique is based on the porous medium combustion (PMC) technology, which is developed for steady state household and industrial combustion processes. Based on the adiabatic combustion in porous medium (PM), a porous medium in engine piston as a concept is proposed here to achieve improved combustion efficiency and low emissions. Using a commercial code CONVERGE the entire cycle is simulated and presented here.
Technical Paper

Development of Variable Stiffness Suspension System Considering Handling, Comfort and Structural Fatigue

2018-07-09
2018-28-0061
This paper describes the development of a varying stiffness suspension system to have better control over handling, comfort and structural fatigue of automobiles. Earlier approaches resulted in cumbersome designs and resulted in higher lateral forces on coil springs and structural fatigue. In this work, an initiative has been taken considering all these factors and optimizing the design at every stage of development to achieve lightweight and economical suspension system to meet the objectives. The variable stiffness is achieved through the relative travel of spring with respect to the wheel travel for different configurations. For this purpose, a stepper motor drive is employed to move the hinge point in the angular arch. The developed design is also examined through mathematical modeling and the MBD simulations.
Technical Paper

Experimental Field Performance Analysis of Small Weed Remover in Sugarcane Grassland

2018-07-09
2018-28-0063
Agriculture is a backbone of country’s economy. To increase the crop production efficiency weeds are to be removed. The present weeding machines are different in dimension which may not be suited to small and medium field farmers, due cost effectiveness and dimensions. This work presents the development of sugarcane weed remover (SWR) and its performance investigation to improve the weed removal rate. The SWR is an application specific machine, it consists of single cylinder air cooled gasoline engine, blade assembly and transmission system. In order to improve SWR efficiency different blade profiles are theoretically analysed. The optimised blade profile is employed in the weed remover which offers fuel consumption of 0.11 g/(KW.h). The SWR on-field experience confirmed that the field capacity and efficiency in weeding is 0.0025 ha/hr and 60% respectively.
Technical Paper

Study of Surface Integrity and Effect of Laser Peening on Maraging Steel Produced by Lasercusing Technique

2018-07-09
2018-28-0094
In additive manufacturing, lasercusing is the selective laser melting technique. Finely pulverized metal is melted using a high-energy fibre laser, by Island principle strategy produces mechanically and thermally stable metallic components with reduced thermal gradients, stresses & at high precision. Maraging steel 300 (18Ni-300) is an iron-nickel steel alloy often used in applications requires high fracture toughness and strength. It maintains dimensional changes at a minimal level, e.g. aircraft and aerospace industries for rocket motor castings and landing gear or tooling applications. Current research attempts to analyze the effect of laser shock peening on lasercused material. Surface roughness of the material was found to be increased by 8%, due to effect of laser shock pulse & ablative nature. Also 8% increase in macro hardness on the surface.
Technical Paper

Theoretical Analysis of High Thermal Conductivity Polymer Composite Fin Based Automotive Radiator under Forced Convection

2018-07-09
2018-28-0099
Though high thermal conductivity polymer composites are prepared based on the thermal requirements, the effectiveness and overall heat transfer performance of the radiators have to be addressed comprehensively to validate the concerned efforts taken to prepare the high thermal conductivity polymer composites. In this article, theoretical analysis on the thermal performance of the cross flow type heat exchanger under convection is performed only by concentrating on the term thermal conductivity of the material. Micro channel based geometry is extracted from the given heat exchanger problem to reduce the complexities of simulation. The term cooling system performance index (CSPI) is used to achieve the expected targets in the present investigation. For shorter fins, the effect of thermal conductivity on the cooling system performance index under lower Reynolds number is insignificant.
Technical Paper

A Hardware Model for Vehicular Network to Control Air Pollution Leading to Big Data Analytics

2018-07-09
2018-28-0038
The foremost emphasis of this paper is to project the need for collecting the outlet pollutant gases from the individual vehicle which is on fleet and the need to maintain the vehicle to make the surveillance of vehicle in the fleet. The data that is collected from the vehicle was stored in the cloud and provided to the vehicle user mobile application that displays the level of pollutant. With the help of pollutant level the user may be aware of the maintenance or the change in vehicle filling station, which will reduce the overall level of pollutant of the vehicle. The data that is uploaded in the cloud will be used by the regional transport office to keep track of the vehicle user.
Technical Paper

Chemical Kinetics Modelling of Exhaust After-Treatment System: A One Dimensional Simulation Approach

2019-01-09
2019-26-0249
The Indian automotive industry has taken a big leap towards stringent Bharat Stage VI (BS VI) emission standards by year 2020. A digital driven design and development focusing on innovative and commercially viable technologies for combustion and exhaust after-treatment system is the need of the time. One-dimensional (1D) simulation serves as a best alternative to its counterparts in terms of obtaining faster and accurate results, which makes it an ideal tool for carrying out optimization studies at system level. In this work, 1D chemical kinetics modelling and analysis of exhaust after-treatment system (EAT) for a heavy-duty diesel has been performed using GT-Power. Initially, a single site 1D model for a diesel oxidation catalyst (DOC) has been developed and then, a two-site, 1D model for a selective catalytic reduction (SCR) catalyst was also developed based on reactor data.
Technical Paper

Design and Analysis of Automotive Steering Sheet Metal Yoke for High Strength and Rigidity Requirement

2019-10-11
2019-28-0122
The increasing demand for light weighting products due to introduction of various standards and norms for controlling CO2 emissions and to meet the customer requirement of low cost with higher strength and rigidity of product in automotive industry, sheet metal manufacturing technique is adopted for automotive steering yoke for light commercial vehicle. Currently forged yokes are used for higher strength requirement, while sheet metal yokes are being used for small tonnage vehicle. The attempt has been made to improve overall strength and rigidity of the yoke produced by sheet metal operation using SAPH 440 steel with 6.5mm thickness for light commercial vehicle segments. The major challenge identified for this development was developing such a high strength and thickness material with consistency of dimension during forming process and meeting the torsional strength requirement of 500 Nm.
Technical Paper

Modelling and Validation of a Control Algorithm for Yaw Stability & Body Slip Control Using PID & Fuzzy Logic Based Controllers

2019-10-11
2019-28-0054
Advanced driver-assistance systems (ADAS) are becoming an essential part of the modern commercial automobile industry. Vehicle handling and stability are determined by the yaw rate and body slip of the vehicle. This paper is a comparative study of a nonlinear vehicle stability control algorithms for steering control based on two different controllers i.e. fuzzy logic based controller and PID controller. A full vehicle 14DOF model was made in Simulink to simulate an actual vehicle. The control algorithms are based on a two-track 7-DOF model with a non-linear tire model based on Pacejka “Magic tire formula”, which was used to establish the desired response of a full vehicle 14DOF model. It was found that the fuzzy logic-based control algorithm demonstrated an overall superior performance characteristic than a PID based control algorithm; this includes a significant decrease in time lag and overshoot.
X