Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Fleetwide Safety Benefits of Production Forward Collision and Lane Departure Warning Systems

2014-04-01
2014-01-0166
Forward Collision Warning (FCW) and Lane Departure Warning (LDW) systems are two active safety systems that have recently been added to the U.S. New Car Assessment Program (NCAP) evaluation. Vehicles that pass confirmation tests may advertise the presence of FCW and LDW alongside the vehicle's star safety rating derived from crash tests. This paper predicts the number of crashes and injured drivers that could be prevented if all vehicles in the U.S. fleet were equipped with production FCW and/or LDW systems. Models of each system were developed using the test track data collected for 16 FCW and 10 LDW systems by the NCAP confirmation tests. These models were used in existing fleetwide benefits models developed for FCW and LDW. The 16 FCW systems evaluated could have potentially prevented between 9% and 53% of all rear-end collisions and prevented between 19% and 60% of injured (MAIS2+) drivers. Earlier warning times prevented more warnings and injuries.
Journal Article

Long-Term Evolution of Straight Crossing Path Crash Occurrence in the U.S. Fleet: The Potential of Intersection Active Safety Systems

2019-04-02
2019-01-1023
Intersection collisions currently account for approximately one-fifth of all crashes and one-sixth of all fatal crashes in the United States. One promising method of mitigating these crashes and fatalities is to develop and install Intersection Advanced Driver Assistance Systems (I-ADAS) on vehicles. When an intersection crash is imminent, the I-ADAS system can either warn the driver or apply automated braking. The potential safety benefit of I-ADAS has been previously examined based on real-world cases drawn from the National Motor Vehicle Crash Causation Survey (NMVCCS). However, these studies made the idealized assumption of full installation in all vehicles of a future fleet. The objective of this work was to predict the reduction in Straight Crossing Path (SCP) crashes due to I-ADAS systems in the United States over time. The proportion of new vehicles with I-ADAS was modeled using Highway Loss Data Institute (HLDI) fleet penetration predictions.
Technical Paper

Analysis of Event Data Recorder Survivability in Crashes with Fire, Immersion, and High Delta-V

2015-04-14
2015-01-1444
Event data recorders (EDRs) must survive regulatory frontal and side compliance crash tests if installed within a car or light truck built on or after September 1, 2012. Although previous research has shown that EDR data are surviving these tests, little is known about whether EDRs are capable of surviving collisions of higher delta-v, or crashes involving vehicle fire or immersion. The goal of this study was to determine the survivability of light vehicle EDRs in real world fire, immersion, and high change in velocity (delta-v) cases. The specific objective was to identify the frequency of these extreme events and to determine the EDR data download outcome when subject to damage caused by these events. This study was performed using three crash databases: the Fatality Analysis Reporting System (FARS), the National Automotive Sampling System / Crashworthiness Data System (NASS/CDS), and the National Motor Vehicle Crash Causation Survey (NMVCCS).
Technical Paper

Survivability of Event Data Recorder Data in Exposure to High Temperature, Submersion, and Static Crush

2015-04-14
2015-01-1449
Event data recorder (EDR) data are currently only required to survive the crash tests specified by Federal Motor Vehicle Safety Standard (FMVSS) 208 and FMVSS 214. Although these crash tests are severe, motor vehicles are also exposed to more severe crashes, fire, and submersion. Little is known about whether current EDR data are capable of surviving these events. The objective of this study was to determine the limits of survivability for EDR data for realistic car crash conditions involving heat, submersion, and static crush. Thirty-one (31) EDRs were assessed in this study: 4 in the pilot tests and 27 in the production tests. The production tests were conducted on model year (MY) 2011-2012 EDRs enclosed in plastic, metal, or a combination of both materials. Each enclosure type was exposed to 9 tests. The high temperature tests were divided into 3 oven testing conditions: 100°C, 150°C, and 200°C.
Technical Paper

Estimating Benefits of LDW Systems Applied to Cross-Centerline Crashes

2018-04-03
2018-01-0512
Objective: Opposite-direction crashes can be extremely severe because opposing vehicles often have high relative speeds. The most common opposite direction crash scenario occurs when a driver departs their lane driving over the centerline and impacts a vehicle traveling in the opposite direction. This cross-centerline crash mode accounts for only 4% of all non-junction non-interchange crashes but 25% of serious injury crashes of the same type. One potential solution to this problem is the Lane Departure Warning (LDW) system which can monitor the position of the vehicle and provide a warning to the driver if they detect the vehicle is moving out of the lane. The objective of this study was to determine the potential benefits of deploying LDW systems fleet-wide for avoidance of cross-centerline crashes. Methods: In order to estimate the potential benefits of LDW for reduction of cross-centerline crashes, a comprehensive crash simulation model was developed.
Journal Article

Validation of Event Data Recorders in Side-Impact Crash Tests

2014-04-01
2014-01-0503
This study evaluated the accuracy of 75 Event Data Recorders (EDRs) extracted from model year 2010-2012 Chrysler, Ford, General Motors, Honda, Mazda, and Toyota vehicles subjected to side-impact moving deformable barrier crash tests. The test report and vehicle-mounted accelerometers provided reference values to assess the EDR reported change in lateral velocity (delta-v), seatbelt buckle status, and airbag deployment status. Our results show that EDRs underreported the reference lateral delta-v in the vast majority of cases, mimicking the errors and conclusions found in some longitudinal EDR accuracy studies. For maximum lateral delta-v, the average arithmetic error was −3.59 kph (−13.8%) and the average absolute error was 4.05 kph (15.9%). All EDR reports that recorded a seatbelt buckle status data element correctly recorded the buckle status at both the driver and right front passenger locations.
X