Refine Your Search

Topic

Author

Search Results

Journal Article

Impact of Intelligent Transportation Systems on Vehicle Fuel Consumption and Emission Modeling: An Overview

2014-01-15
2013-01-9094
Climate change due to greenhouse gas emissions has led to new vehicle emissions standards which in turn have led to a call for vehicle technologies to meet these standards. Modeling of vehicle fuel consumption and emissions emerged as an effective tool to help in developing and assessing such technologies, to help in predicting aggregate vehicle fuel consumption and emissions, and to complement traffic simulation models. The paper identifies the current state of the art on vehicle fuel consumption and emissions modeling and its utilization to test the environmental impact of the Intelligent Transportation Systems (ITS)’ measures and to evaluate transportation network improvements. The study presents the relevant models to ITS in the key classifications of models in this research area. It demonstrates that the trends of vehicle fuel consumption and emissions provided by current models generally do satisfactorily replicate field data trends.
Journal Article

Fleetwide Safety Benefits of Production Forward Collision and Lane Departure Warning Systems

2014-04-01
2014-01-0166
Forward Collision Warning (FCW) and Lane Departure Warning (LDW) systems are two active safety systems that have recently been added to the U.S. New Car Assessment Program (NCAP) evaluation. Vehicles that pass confirmation tests may advertise the presence of FCW and LDW alongside the vehicle's star safety rating derived from crash tests. This paper predicts the number of crashes and injured drivers that could be prevented if all vehicles in the U.S. fleet were equipped with production FCW and/or LDW systems. Models of each system were developed using the test track data collected for 16 FCW and 10 LDW systems by the NCAP confirmation tests. These models were used in existing fleetwide benefits models developed for FCW and LDW. The 16 FCW systems evaluated could have potentially prevented between 9% and 53% of all rear-end collisions and prevented between 19% and 60% of injured (MAIS2+) drivers. Earlier warning times prevented more warnings and injuries.
Journal Article

Road Profile Estimation for Active Suspension Applications

2015-04-14
2015-01-0651
The road profile has been shown to have significant effects on various vehicle conditions including ride, handling, fatigue or even energy efficiency; as a result it has become a variable of interest in the design and control of numerous vehicle parts. In this study, an integrated state estimation algorithm is proposed that can provide continuous information on road elevation and profile variations, primarily to be used in active suspension controls. A novel tire instrumentation technology (smart tire) is adopted together with a sensor couple of wheel attached accelerometer and suspension deflection sensor as observer inputs. The algorithm utilizes an adaptive Kalman filter (AKF) structure that provides the sprung and unsprung mass displacements to a sliding-mode differentiator, which then yields to the estimation of road elevations and the corresponding road profile along with the quarter car states.
Journal Article

Assessment of Ride Comfort and Braking Performance Using Energy-Harvesting Shock Absorber

2015-04-14
2015-01-0649
Conventional viscous shock absorbers, in parallel with suspension springs, passively dissipate the excitation energy from road irregularity into heat waste, to reduce the transferred vibration which causes the discomfort of passengers. Energy-harvesting shock absorbers, which have the potential of conversion of kinetic energy into electric power, have been proposed as semi-active suspension to achieve better balance between the energy consumption and suspension performance. Because of the high energy density of the rotary shock absorber, a rotational energy-harvesting shock absorber with mechanical motion rectifier (MMR) is used in this paper. This paper presents the assessment of vehicle dynamic performance with the proposed energy-harvesting shock absorber in braking process. Moreover, a PI controller is proposed to attenuate the negative effect due to the pitch motion.
Journal Article

Analytical Modelling of Diesel Powertrain Fuel System and Consumption Rate

2015-01-01
2014-01-9103
Vehicle analytical models are often favorable due to describing the physical phenomena associated with vehicle operation following from the principles of physics, with explainable mathematical trends and with extendable modeling to other types of vehicle. However, no experimentally validated analytical model has been developed as yet of diesel engine fuel consumption rate. The present paper demonstrates and validates for trucks and light commercial vehicles an analytical model of supercharged diesel engine fuel consumption rate. The study points out with 99.6% coefficient of determination that the average percentage of deviation of the steady speed-based simulated results from the corresponding field data is 3.7% for all Freeway cycles. The paper also shows with 98% coefficient of determination that the average percentage of deviation of the acceleration-based simulated results from the corresponding field data under negative acceleration is 0.12 %.
Journal Article

Battery Charge Balance and Correction Issues in Hybrid Electric Vehicles for Individual Phases of Certification Dynamometer Driving Cycles as Used in EPA Fuel Economy Label Calculations

2012-04-16
2012-01-1006
This study undertakes an investigation of the effect of battery charge balance in hybrid electric vehicles (HEVs) on EPA fuel economy label values. EPA's updated method was fully implemented in 2011 and uses equations which weight the contributions of fuel consumption results from multiple dynamometer tests to synthesize city and highway estimates that reflect average U.S. driving patterns. For the US06 and UDDS cycles, the test results used in the computation come from individual phases within the overall certification driving cycles. This methodology causes additional complexities for hybrid vehicles, because although they are required to be charge-balanced over the course of a full drive cycle, they may have net charge or discharge within the individual phases. As a result, the fuel consumption value used in the label value calculation can be skewed.
Journal Article

Field Relevance of the New Car Assessment Program Lane Departure Warning Confirmation Test

2012-04-16
2012-01-0284
The availability of active safety systems, such as Lane Departure Warning (LDW), has recently been added as a rating factor in the U.S. New Car Assessment Program (NCAP). The objective of this study is to determine the relevance of the NCAP LDW confirmation test to real-world road departure crashes. This study is based on data collected as part of supplemental crash reconstructions performed on 890 road departure collisions from the National Automotive Sampling System, Crashworthiness Data System (NASS/CDS). Scene diagrams and photographs were examined to determine the lane departure and lane marking characteristics not available in the original data. The results suggest that the LDW confirmation test captures many of the conditions observed in real-world road departures. For example, 40% of all single vehicle collisions in the dataset involved a drift-out-of-lane type of departures represented by the test.
Journal Article

Control Strategy for the Excitation of a Complete Vehicle Test Rig with Terrain Constraints

2013-04-08
2013-01-0671
A unique concept for a multi-body test rig enabling the simulation of longitudinal, steering and vertical dynamics was developed at the Institute for Mechatronic Systems (IMS) at TU Darmstadt. A prototype of this IMS test rig is currently being built. In conjunction with the IMS test rig, the Vehicle Terrain Performance Laboratory (VTPL) at Virginia Tech further developed a full car, seven degree of freedom (7 DOF) simulation model capable of accurately reproducing measured displacement, pitch, and roll of the vehicle body due to terrain excitation. The results of the 7 DOF car model were used as the reference input to the multi-body IMS test rig model. The goal of the IMS/VTPL joint effort was to determine whether or not a controller for the IMS test rig vertical actuator could accurately reproduce wheel displacements due to different measured terrain constraints.
Technical Paper

Modification of the Internal Flows of Thermal Propulsion Systems Using Local Aerodynamic Inserts

2020-09-15
2020-01-2039
Modern thermal propulsion systems (TPS) as part of hybrid powertrains are becoming increasingly complex. They have an increased number of components in comparison to traditionally powered vehicles leading to increased demand in packaging requirements. Many of the components in these systems relate to achieving efficiency gains, weight saving and pollutant reduction. This includes turbochargers and diesel or gasoline particulate filters for example and these are known to be very sensitive to inlet boundary conditions. When overcoming packaging requirements, sub-optimal flow distributions throughout the TPS can easily occur. Moreover, the individual components are often designed in isolation assuming relatively flat and artificially quiescent inlet flow conditions in comparison to those they are actually presented with. Thus, some of the efficiency benefits are lost through reduced component aerodynamic efficiency.
Technical Paper

Sensitivity of Preferred Driving Postures and Determination of Core Seat Track Adjustment Ranges

2007-06-12
2007-01-2471
With advances in virtual prototyping, accurate digital modeling of driving posture is regarded as a fundamental step in the design of ergonomic driver-seat-cabin systems. Extensive work on driving postures has been carried out focusing on the measurement and prediction of driving postures and the determination of comfortable joint angle ranges. However, studies on postural sensitivity are scarce. The current study investigated whether a driver-selected posture actually represents the most preferred one, by comparing the former with ratings of postures selected at 20 predefined places around the original hip joint center (HJC). An experiment was undertaken in a lab setting, using two distinctive driving package geometries: one for a sedan and the other for an SUV. The 20 postural ratings were compared with that of the initial user-selected position.
Technical Paper

A Simplified Battery Model for Hybrid Vehicle Technology Assessment

2007-04-16
2007-01-0301
The objective of this work is to provide a relatively simple battery energy storage and loss model that can be used for technology screening and design/sizing studies of hybrid electric vehicle powertrains. The model dynamic input requires only power demand from the battery terminals (either charging or discharging), and outputs internal battery losses, state-of-charge (SOC), and pack temperature. Measured data from a vehicle validates the model, which achieves reasonable accuracy for current levels up to 100 amps for the size battery tested. At higher current levels, the model tends to report a higher current than what is needed to create the same power level shown through the measured data. Therefore, this battery model is suitable for evaluating hybrid vehicle technology and energy use for part load drive cycles.
Technical Paper

Vehicle Design Analysis and Validation for the Equinox REVLSE E85 Hybrid Electric Vehicle

2007-04-16
2007-01-1066
The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is participating in the 2005 - 2007 Challenge X advanced technology vehicle competition series, sponsored by General Motors Corporation, the U.S. Department of Energy, and Argonne National Lab. This report documents the Equinox REVLSE (Renewable Energy Vehicle, the Larsen Special Edition) design and specifies how it meets the Vehicle Technical Specifications (VTS) set by Challenge X and HEVT through simulation and test results. The report also documents the vehicle control development process, specifies the control code generation, demonstrates an analysis of hybrid powertrain losses, and presents the REVLSE vehicle balance in its intended market.
Technical Paper

Vehicle Inertia Impact on Fuel Consumption of Conventional and Hybrid Electric Vehicles Using Acceleration and Coast Driving Strategy

2009-04-20
2009-01-1322
In the past few years, the price of petroleum based fuels, especially vehicle fuels such as gasoline and diesel, have been increasing at a significant rate. Consequently, there is much more consumer interest related to reducing fuel consumption of conventional and hybrid electric vehicles (HEVs). The “pulse and glide” (PnG) driving strategy is first applied to a conventional vehicle to quantify the fuel consumption benefits when compared to steady state speed (cruising) conditions over the same time and distance. Then an HEV is modeled and tested to investigate if a hybrid system can further reduce fuel consumption with the proposed strategy. Note that the HEV used in this study has the advantage that the engine can be automatically shut off below a certain speed (∼40 mph, 64 kph) at low loads, however a driver must shut off the engine manually in a conventional vehicle to apply this driving strategy.
Technical Paper

Closed Loop Transaxle Synchronization Control Design

2010-04-12
2010-01-0817
This paper covers the development of a closed loop transaxle synchronization algorithm which was a key deliverable in the control system design for the L3 Enigma, a Battery Dominant Hybrid Electric Vehicle. Background information is provided to help the reader understand the history that lead to this unique solution of the input and output shaft synchronizing that typically takes place in a manual vehicle transmission or transaxle when shifting into a gear from another or into a gear from neutral when at speed. The algorithm stability is discussed as it applies to system stability and how stability impacts the speed at which a shift can take place. Results are simulated in The MathWorks Simulink programming environment and show how traction motor technology can be used to efficiently solve what is often a machine design issue. The vehicle test bed to which this research is applied is a parallel biodiesel hybrid electric vehicle called the Enigma.
Technical Paper

A Methodology for Laboratory Testing of Truck Cab Suspensions

2009-10-06
2009-01-2862
This work pertains to laboratory testing of truck cab suspensions for the purpose of improving in-cab ride quality. It describes the testing procedure of a complete truck cab suspension while still being mounted on the vehicle. It allows for testing with minimal amount of resources, limited to two mobile actuators and minimal modifications to the stock vehicle. The actuators can be attached to any axle through a set of modified brake drums and excite the drive axle in a vertical plane. The excitation signal sent to the actuators can be in phase for a heave type motion or out of phase for a roll motion. The chassis shock absorbers are replaced with rigid links to prevent the actuator input from becoming filtered by the primary suspension. This allows the input to reach the cab suspension more directly and the cab to be excited across a broader range of frequencies.
Technical Paper

Development of Auditory Warning Signals for Mitigating Heavy Truck Rear-End Crashes

2010-10-05
2010-01-2019
Rear-end crashes involving heavy trucks occur with sufficient frequency that they are a cause of concern within regulatory agencies. In 2006, there were approximately 23,500 rear-end crashes involving heavy trucks which resulted in 135 fatalities. As part of the Federal Motor Carrier Safety Administration's (FMCSA) goal of reducing the overall number of truck crashes, the Enhanced Rear Signaling (ERS) for Heavy Trucks project was developed to investigate methods to reduce or mitigate those crashes where a heavy truck has been struck from behind by another vehicle. Researchers also utilized what had been learned in the rear-end crash avoidance work with light vehicles that was conducted by the National Highway Traffic Safety Administration (NHTSA) with Virginia Tech Transportation Institute (VTTI) serving as the prime research organization. ERS crash countermeasures investigated included passive conspicuity markings, visual signals, and auditory signals.
Technical Paper

Can Semiactive Dampers with Skyhook Control Improve Roll Stability of Passenger Vehicles?

2004-05-04
2004-01-2099
Skyhook control has been used extensively for semiactive dampers for a variety of applications, most widely for passenger vehicle suspensions. This paper provides an experimental evaluation of how well skyhook control works for improving roll stability of a passenger vehicle. After discussing the formulation for various semiactive control methods that have been suggested in the past for vehicle suspensions, the paper includes the implementation of a semiactive system with magneto-rheological (MR) dampers on a sport utility vehicle. The vehicle is used for a series of road tests that includes lane change maneuvers, with different types of suspensions. The suspensions that are tested include the stock suspension, the uncontrolled MR dampers, skyhook control, and a new semiactive control method called “SIA skyhook.” The SIA Skyhook augments the conventional skyhook control with steering input, in order to account for the suspension requirements during a lateral maneuver.
Technical Paper

Control Strategy Development for Parallel Plug-In Hybrid Electric Vehicle Using Fuzzy Control Logic

2016-10-17
2016-01-2222
The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is currently developing a control strategy for a parallel plug-in hybrid electric vehicle (PHEV). The hybrid powertrain is being implemented in a 2016 Chevrolet Camaro for the EcoCAR 3 competition. Fuzzy rule sets determine the torque split between the motor and the engine using the accelerator pedal position, vehicle speed and state of charge (SOC) as the input variables. The torque producing components are a 280 kW V8 L83 engine with active fuel management (AFM) and a post-transmission (P3) 100 kW custom motor. The vehicle operates in charge depleting (CD) and charge sustaining (CS) modes. In CD mode, the model drives as an electric vehicle (EV) and depletes the battery pack till a lower state of charge threshold is reached. Then CS operation begins, and driver demand is supplied by the engine operating in V8 or AFM modes with supplemental or loading torque from the P3 motor.
Technical Paper

Conceptual Design and Weight Optimization of Aircraft Power Systems with High-Peak Pulsed Power Loads

2016-09-20
2016-01-1986
The more electric aircraft (MEA) concept has gained popularity in recent years. As the main building blocks of advanced aircraft power systems, multi-converter power electronic systems have advantages in reliability, efficiency and weight reduction. The pulsed power load has been increasingly adopted--especially in military applications--and has demonstrated highly nonlinear characteristics. Consequently, more design effort needs to be placed on power conversion units and energy storage systems dealing with this challenging mission profile: when the load is on, a large amount of power is fed from the power supply system, and this is followed by periods of low power consumption, during which time the energy storage devices get charged. Thus, in order to maintain the weight advantage of MEA and to keep the normal functionality of the aircraft power system in the presence of a high-peak pulsed power load, this paper proposes a novel multidisciplinary weight optimization technique.
Technical Paper

An Extended-Range Electric Vehicle Control Strategy for Reducing Petroleum Energy Use and Well-to-Wheel Greenhouse Gas Emissions

2011-04-12
2011-01-0915
The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is participating in the 2008 - 2011 EcoCAR: The NeXt Challenge Advanced Vehicle Technology Competition series organized by Argonne National Laboratory (ANL) and sponsored by General Motors (GM) and the U.S. Department of Energy (DoE). Following GM's vehicle development process, HEVT established goals that meet or exceed the competition requirements for EcoCAR in the design of a plug-in, range-extended hybrid electric vehicle. The challenge involves designing a crossover SUV powertrain to reduce fuel consumption, petroleum energy use and well-to-wheels (WTW) greenhouse gas (GHG) emissions. In order to interface with and control the vehicle, the team added a National Instruments (NI) CompactRIO (cRIO) to act as a hybrid vehicle supervisory controller (HVSC).
X