Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Method for Estimating Time to Collision at Braking in Real-World, Lead Vehicle Stopped Rear-End Crashes for Use in Pre-Crash System Design

This study presents a method for determining the time to collision (TTC) at which a driver of the striking vehicle in a real-world, lead vehicle stopped (LVS) rear-end collision applied the brakes. The method employs real-world cases that were extracted from the National Automotive Sampling System / Crashworthiness Data System (NASS / CDS) years 2000 to 2009. Selected cases had an Event Data Recorder (EDR) recovered from the striking vehicle that contained pre-crash vehicle speed and brake application. Of 59 cases with complete EDR records, 12 cases (20%) of drivers appeared not to apply the brakes at all prior to the collision. The method was demonstrated using 47 rear-end cases in which there was driver braking. The average braking deceleration for those cases with sufficient vehicle speed information was found to be 0.52 g's. The average TTC that braking was initiated at was found to vary in the sample population from 1.1 to 1.4 seconds.
Technical Paper

Has Electronic Stability Control Reduced Rollover Crashes?

Vehicle rollovers are one of the more severe crash modes in the US - accounting for 32% of all passenger vehicle occupant fatalities annually. One design enhancement to help prevent rollovers is Electronic Stability Control (ESC) which can reduce loss of control and thus has great promise to enhance vehicle safety. The objectives of this research were (1) to estimate the effectiveness of ESC in reducing the number of rollover crashes and (2) to identify cases in which ESC did not prevent the rollover to potentially advance additional ESC development. All passenger vehicles and light trucks and vans that experienced a rollover from 2006 to 2015 in the National Automotive Sampling System Crashworthiness Database System (NASS/CDS) were analyzed. Each rollover was assigned a crash scenario based on the crash type, pre-crash maneuver, and pre-crash events.
Technical Paper

Analysis of Event Data Recorder Survivability in Crashes with Fire, Immersion, and High Delta-V

Event data recorders (EDRs) must survive regulatory frontal and side compliance crash tests if installed within a car or light truck built on or after September 1, 2012. Although previous research has shown that EDR data are surviving these tests, little is known about whether EDRs are capable of surviving collisions of higher delta-v, or crashes involving vehicle fire or immersion. The goal of this study was to determine the survivability of light vehicle EDRs in real world fire, immersion, and high change in velocity (delta-v) cases. The specific objective was to identify the frequency of these extreme events and to determine the EDR data download outcome when subject to damage caused by these events. This study was performed using three crash databases: the Fatality Analysis Reporting System (FARS), the National Automotive Sampling System / Crashworthiness Data System (NASS/CDS), and the National Motor Vehicle Crash Causation Survey (NMVCCS).
Technical Paper

Preliminary Estimates of Near Side Crash Injury Risk in Best Performing Passenger Vehicles

The goal of this paper is to estimate near-side injury risk in vehicles with the best side impact performance in the U.S. New Car Assessment Program (NCAP). The longer-term goal is to predict the incidence of crashes and injury outcomes in the U.S. in a future fleet of the 2025-time frame after current active and passive safety countermeasures are fully implemented. Our assumption was that, by 2025, all new vehicles will have side impact passive safety performance equivalent to current U.S. NCAP five star ratings. The analysis was based on real-world crashes extracted from case years 2010-2015 in the National Automotive Sampling System / Crashworthiness Data System (NASS/CDS) in which front-row occupants of late-model vehicles (Model Year 2011+) were exposed to a near-side crash.