Refine Your Search

Topic

Search Results

Journal Article

Mitigating Heavy Truck Rear-End Crashes with the use of Rear-Lighting Countermeasures

2010-10-05
2010-01-2023
In 2006, there were approximately 23,500 rear-end crashes involving heavy trucks (i.e., gross vehicle weight greater than 4,536 kg). The Enhanced Rear Signaling (ERS) for Heavy Trucks project was developed by the Federal Motor Carrier Safety Administration (FMCSA) to investigate methods to reduce or mitigate those crashes where a heavy truck has been struck from behind by another vehicle. Visual warnings have been shown to be effective, assuming the following driver is looking directly at the warning display or has his/her eyes drawn to it. A visual warning can be placed where it is needed and it can be designed so that its meaning is nearly unambiguous. FMCSA contracted with the Virginia Tech Transportation Institute (VTTI) to investigate potential benefit of additional rear warning-light configurations as rear-end crash countermeasures for heavy trucks.
Journal Article

Location-Aware Adaptive Vehicle Dynamics System: Brake Modulation

2014-04-01
2014-01-0079
A Location-Aware Adaptive Vehicle Dynamics System (LAAVDS) is developed to assist the driver in maintaining vehicle handling capabilities through various driving maneuvers. An integral part of this System is an Intervention Strategy that uses a novel measure of handling capability, the Performance Margin, to assess the need to intervene. Through this strategy, the driver's commands are modulated to affect desired changes to the Performance Margin in a manner that is minimally intrusive to the driver's control authority. Real-time implementation requires the development of computationally efficient predictive vehicle models. This work develops one means to alter the future vehicle states: modulating the driver's brake commands. This control strategy must be considered in relationship to changes in the throttle commands. Three key elements of this strategy are developed in this work.
Journal Article

Location-Aware Adaptive Vehicle Dynamics System: Throttle Modulation

2014-04-01
2014-01-0105
A Location-Aware Adaptive Vehicle Dynamics System (LAAVDS) is developed to assist the driver in maintaining vehicle handling capabilities through various driving maneuvers. An Intervention Strategy uses a novel measure of handling capability, the Performance Margin, to assess the need to intervene. The driver's commands are modulated to affect desired changes to the Performance Margin in a manner that is minimally intrusive to the driver's control authority. Real-time implementation requires the development of computationally efficient predictive vehicle models which is the focus of this work. This work develops one means to alter the future vehicle states: modulating the driver's throttle commands. First, changes to the longitudinal force are translated to changes in engine torque based on the current operating state (torque and speed) of the engine.
Journal Article

Fleetwide Safety Benefits of Production Forward Collision and Lane Departure Warning Systems

2014-04-01
2014-01-0166
Forward Collision Warning (FCW) and Lane Departure Warning (LDW) systems are two active safety systems that have recently been added to the U.S. New Car Assessment Program (NCAP) evaluation. Vehicles that pass confirmation tests may advertise the presence of FCW and LDW alongside the vehicle's star safety rating derived from crash tests. This paper predicts the number of crashes and injured drivers that could be prevented if all vehicles in the U.S. fleet were equipped with production FCW and/or LDW systems. Models of each system were developed using the test track data collected for 16 FCW and 10 LDW systems by the NCAP confirmation tests. These models were used in existing fleetwide benefits models developed for FCW and LDW. The 16 FCW systems evaluated could have potentially prevented between 9% and 53% of all rear-end collisions and prevented between 19% and 60% of injured (MAIS2+) drivers. Earlier warning times prevented more warnings and injuries.
Journal Article

Optimal Direct Yaw Controller Design for Vehicle Systems with Human Driver

2011-09-13
2011-01-2149
Dynamic game theory brings together different features that are keys to many situations in control design: optimization behavior, the presence of multiple agents/players, enduring consequences of decisions and robustness with respect to variability in the environment, etc. In the presented methodology, vehicle stability is represented by a cooperative dynamic/difference game such that its two agents (players), namely, the driver and the direct yaw controller (DYC), are working together to provide more stability to the vehicle system. While the driver provides the steering wheel control, the DYC control algorithm is obtained by the Nash game theory to ensure optimal performance as well as robustness to disturbances. The common two-degree of freedom (DOF) vehicle handling performance model is put into discrete form to develop the game equations of motion.
Journal Article

Anthropomimetic Traction Control: Quarter Car Model

2011-09-13
2011-01-2178
Human expert drivers have the unique ability to combine correlated sensory inputs with repetitive learning to build complex perceptive models of the vehicle dynamics as well as certain key aspects of the tire-ground interface. This ability offers significant advantages for navigating a vehicle through the spatial and temporal uncertainties in a given environment. Conventional traction control algorithms utilize measurements of wheel slip to help insure that the wheels do not enter into an excessive slip condition such as burnout. This approach sacrifices peak performance to ensure that the slip limits are generic enough suck that burnout is avoided on a variety of surfaces: dry pavement, wet pavement, snow, gravel, etc. In this paper, a novel approach to traction control is developed using an anthropomimetic control synthesis strategy.
Journal Article

Linear Quadratic Game Theory Approach to Optimal Preview Control of Vehicle Lateral Motion

2011-04-12
2011-01-0963
Vehicle stability is maintained by proper interactions between the driver and vehicle stability control system. While driver describes the desired target path by commanding steering angle and acceleration/deceleration rates, vehicle stability controller tends to stabilize higher dynamics of the vehicle by correcting longitudinal, lateral, and roll accelerations. In this paper, a finite-horizon optimal solution to vehicle stability control is introduced in the presence of driver's dynamical decision making structure. The proposed concept is inspired by Nash strategy for exactly known systems with more than two players, in which driver, commanding steering wheel angle, and vehicle stability controller, applying compensated yaw moment through differential braking strategy, are defined as the dynamic players of the 2-player differential linear quadratic game.
Journal Article

Location-Aware Adaptive Vehicle Dynamics System: Concept Development

2014-04-01
2014-01-0121
One seminal question that faces a vehicle's driver (either human or computer) is predicting the capability of the vehicle as it encounters upcoming terrain. A Location-Aware Adaptive Vehicle Dynamics (LAAVD) System is developed to assist the driver in maintaining vehicle handling capabilities through various driving maneuvers. In contrast to current active safety systems, this system is predictive rather than reactive. This work provides the conceptual groundwork for the proposed system. The LAAVD System employs a predictor-corrector method in which the driver's input commands (throttle, brake, steering) and upcoming driving environment (terrain, traffic, weather) are predicted. An Intervention Strategy uses a novel measure of handling capability, the Performance Margin, to assess the need to intervene. The driver's throttle and brake control are modulated to affect desired changes to the Performance Margin in a manner that is minimally intrusive to the driver's control authority.
Technical Paper

Predicting Driving Postures and Seated Positions in SUVs Using a 3D Digital Human Modeling Tool

2008-06-17
2008-01-1856
3D digital human modeling (DHM) tools for vehicle packaging facilitate ergonomic design and evaluation based on anthropometry, comfort, and force analysis. It is now possible to quickly predict postures and positions for drivers with selected anthropometry based on ergonomics principles. Despite their powerful visual representation technology for human movements and postures, these tools are still questioned with regard to the validity of the output they provide, especially when predictions are made for different populations. Driving postures and positions of two populations (i.e. North Americans and Koreans) were measured in actual and mock-up SUVs to investigate postural differences and evaluate the results provided by a DHM tool. No difference in driving postures was found between different stature groups within the same population. Between the two populations, however, preferred angles differed for three joints (i.e., ankle, thigh, and hip).
Technical Paper

Development of Auditory Warning Signals for Mitigating Heavy Truck Rear-End Crashes

2010-10-05
2010-01-2019
Rear-end crashes involving heavy trucks occur with sufficient frequency that they are a cause of concern within regulatory agencies. In 2006, there were approximately 23,500 rear-end crashes involving heavy trucks which resulted in 135 fatalities. As part of the Federal Motor Carrier Safety Administration's (FMCSA) goal of reducing the overall number of truck crashes, the Enhanced Rear Signaling (ERS) for Heavy Trucks project was developed to investigate methods to reduce or mitigate those crashes where a heavy truck has been struck from behind by another vehicle. Researchers also utilized what had been learned in the rear-end crash avoidance work with light vehicles that was conducted by the National Highway Traffic Safety Administration (NHTSA) with Virginia Tech Transportation Institute (VTTI) serving as the prime research organization. ERS crash countermeasures investigated included passive conspicuity markings, visual signals, and auditory signals.
Technical Paper

Preliminary Estimates of Near Side Crash Injury Risk in Best Performing Passenger Vehicles

2018-04-03
2018-01-0548
The goal of this paper is to estimate near-side injury risk in vehicles with the best side impact performance in the U.S. New Car Assessment Program (NCAP). The longer-term goal is to predict the incidence of crashes and injury outcomes in the U.S. in a future fleet of the 2025-time frame after current active and passive safety countermeasures are fully implemented. Our assumption was that, by 2025, all new vehicles will have side impact passive safety performance equivalent to current U.S. NCAP five star ratings. The analysis was based on real-world crashes extracted from case years 2010-2015 in the National Automotive Sampling System / Crashworthiness Data System (NASS/CDS) in which front-row occupants of late-model vehicles (Model Year 2011+) were exposed to a near-side crash.
Technical Paper

Estimating Benefits of LDW Systems Applied to Cross-Centerline Crashes

2018-04-03
2018-01-0512
Objective: Opposite-direction crashes can be extremely severe because opposing vehicles often have high relative speeds. The most common opposite direction crash scenario occurs when a driver departs their lane driving over the centerline and impacts a vehicle traveling in the opposite direction. This cross-centerline crash mode accounts for only 4% of all non-junction non-interchange crashes but 25% of serious injury crashes of the same type. One potential solution to this problem is the Lane Departure Warning (LDW) system which can monitor the position of the vehicle and provide a warning to the driver if they detect the vehicle is moving out of the lane. The objective of this study was to determine the potential benefits of deploying LDW systems fleet-wide for avoidance of cross-centerline crashes. Methods: In order to estimate the potential benefits of LDW for reduction of cross-centerline crashes, a comprehensive crash simulation model was developed.
Technical Paper

Validation of a Driver Recovery Model Using Real-World Road Departure Cases

2013-04-08
2013-01-0723
Predicting driver response to road departure and attempted recovery is a challenging but essential need for estimating the benefits of active safety systems. One promising approach has been to mathematically model the driver steering and braking inputs during departure and recovery. The objective of this paper is to compare a model developed by Volvo, Ford, and UMRTI (VFU) through the Advanced Crash Avoidance Technologies (ACAT) Program against a set of real-world departure events. These departure events, collected by Hutchinson and Kennedy, include the vehicle's off road trajectory in 256 road departure events involving passenger vehicles. The VFU-ACAT model was exercised for left side road departures onto the median of a divided highway with a speed limit of 113 kph (70 mph). At low departure angles, the VFU-ACAT model underpredicted the maximum lateral and longitudinal distances when compared to the departure events measured by Hutchinson and Kennedy.
Technical Paper

Robust Optimal Control of Vehicle Lateral Motion with Driver-in-the-Loop

2012-09-24
2012-01-1903
Dynamic “Game Theory” brings together different features that are keys to many situations in control design: optimization behavior, the presence of multiple agents/players, enduring consequences of decisions and robustness with respect to variability in the environment, etc. In previous studies, it was shown that vehicle stability can be represented by a cooperative dynamic/difference game such that its two agents (players), namely, the driver and the vehicle stability controller (VSC), are working together to provide more stability to the vehicle system. While the driver provides the steering wheel control, the VSC command is obtained by the Nash game theory to ensure optimal performance as well as robustness to disturbances. The common two-degree of freedom (DOF) vehicle handling performance model is put into discrete form to develop the game equations of motion. This study focus on the uncertainty in the inputs, and more specifically, the driver's steering input.
Technical Paper

Methodology for Estimating the Benefits of Lane Departure Warnings using Event Data Recorders

2018-04-03
2018-01-0509
Road departures are one of the most deadly crash modes, accounting for nearly one third of all crash fatalities in the US. Lane departure warning (LDW) systems can warn the driver of the departure and lane departure prevention (LDP) systems can steer the vehicle back into the lane. One purpose of these systems is to reduce the quantity of road departure crashes. This paper presents a method to predict the maximum effectiveness of these systems. Thirty-nine (39) real world crashes from the National Automotive Sampling System (NASS) Crashworthiness Data System (CDS) database were reconstructed using pre-crash velocities downloaded for each case from the vehicle event data recorder (EDR). The pre-crash velocities were mapped onto the vehicle crash trajectory. The simulations assumed a warning was delivered when the lead tire crossed the lane line. Each case was simulated twice with driver reaction times of 0.38 s and 1.36 s after which time the driver began steering back toward the road.
Technical Paper

Evaluating Simulation Driver Model Performance Using Dynamometer Test Criteria

2022-03-29
2022-01-0530
The influence of driver modeling and drive cycle target speed trace modification on vehicle dynamics within energy consumption simulations is studied. EPA dynamometer speed error criteria and the SAE J2951 Drive Quality Evaluation for Chassis Dynamometer Testing standard are applied to simulation outputs as proposed components of simulation validation, providing guidelines for acceptable vehicle speed outputs and allowing comparison of simulation results to reported EPA dynamometer test statistics. The combined effect of driver model tuning and drive cycle interpolation methods is investigated for the UDDS, HwFET and US06 drive cycles, with EPA-specified linearly interpolated speed trace and a PI controller driver as a baseline result.
Technical Paper

Real Time Bearing Defect Classification Using Time Domain Analysis and Deep Learning Algorithms

2023-04-11
2023-01-0096
Structural Health Monitoring (SHM), especially in the field of rotary machinery diagnosis, plays a crucial role in determining the defect category as well as its intensity in a machine element. This paper proposes a new framework for real-time classification of structural defects in a roller bearing test rig using time domain-based classification algorithms. Along with the bearing defects, the effect of eccentric shaft loading has also been analyzed. The entire system comprises of three modules: sensor module – using accelerometers for data collection, data processing module – using time-domain based signal processing algorithms for feature extraction, and classification module – comprising of deep learning algorithms for classifying between different structural defects occurring within the inner and outer race of the bearing.
Technical Paper

EcoRouting Strategy Using Variable Acceleration Rate Synthesis Methodology

2018-04-16
2018-01-5005
This paper focuses on the analysis of an EcoRouting system with minimum and maximum number of conditional stops. The effect on energy consumption with the presence and absence of road-grade information along a route is also studied. An EcoRouting system has been developed that takes in map information and converts it to a graph of nodes containing route information such as speed limits, stop lights, stop signs and road grade. A variable acceleration rate synthesis methodology is also introduced in this paper that takes into consideration distance, acceleration, cruise speed and jerk rate as inputs to simulate driver behavior on a given route. A simulation study is conducted in the town of Blacksburg, Virginia, USA to analyze the effects of EcoRouting in different driving conditions and to examine the effects of road grade and stop lights on energy consumption.
Technical Paper

Animal-Vehicle Encounter Naturalistic Driving Data Collection and Photogrammetric Analysis

2016-04-05
2016-01-0124
Animal-vehicle collision (AVC) is a significant safety issue on American roads. Each year approximately 1.5 million AVCs occur in the U.S., the majority of them involving deer. The increasing use of cameras and radar on vehicles provides opportunities for prevention or mitigation of AVCs, particularly those involving deer or other large animals. Developers of such AVC avoidance/mitigation systems require information on the behavior of encountered animals, setting characteristics, and driver response in order to design effective countermeasures. As part of a larger study, naturalistic driving data were collected in high AVC incidence areas using 48 participant-owned vehicles equipped with data acquisition systems (DAS). Continuous driving data including forward video, location information, and vehicle kinematics were recorded. The respective 11TB dataset contains 35k trips covering 360K driving miles.
Journal Article

Characterization of Lane Departure Crashes Using Event Data Recorders Extracted from Real-World Collisions

2013-04-08
2013-01-0730
Lane Departure Warning (LDW) is a production active safety system that can warn drivers of an unintended departure. Critical in the design of LDW and other departure countermeasures is understanding pre-crash driver behavior in crashes. The objective of this study was to gain insight into pre-crash driver behavior in departure crashes using Event Data Recorders (EDRs). EDRs are units equipped on many passenger vehicles that are able to store vehicle data, including pre-crash data in many cases. This study used 256 EDRs that were downloaded from GM vehicles involved in real-world lane departure collisions. The crashes were investigated as part of the NHTSA's NASS/CDS database years 2000 to 2011. Nearly half of drivers (47%) made little or no change to their vehicle speed prior to the collision and slightly fewer decreased their speed (43%). Drivers who did not change speed were older (median age 41) compared to those who decreased speed (median age 27).
X