Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Identification of Road Surface Friction for Vehicle Safety Systems

A vehicle's response is predominately defined by the tire characteristics as they constitute the only contact between the vehicle and the road; and the surface friction condition is the primary attribute that determines these characteristics. The friction coefficient is not directly measurable through any sensor attachments in production-line vehicles. Therefore, current chassis control systems make use of various estimation methods to approximate a value. However a significant challenge is that these schemes require a certain level of perturbation (i.e. excitation by means of braking or traction) from the initial conditions to converge to the expected values; which might not be the case all the time during a regular drive.
Journal Article

Finite Element Modeling of Tire Transient Characteristics in Dynamic Maneuvers

Studying the kinetic and kinematics of the rim-tire combination is very important in full vehicle simulations, as well as for the tire design process. Tire maneuvers are either quasi-static, such as steady-state rolling, or dynamic, such as traction and braking. The rolling of the tire over obstacles and potholes and, more generally, over uneven roads are other examples of tire dynamic maneuvers. In the latter case, tire dynamic models are used for durability assessment of the vehicle chassis, and should be studied using high fidelity simulation models. In this study, a three-dimensional finite element model (FEM) has been developed using the commercial software package ABAQUS. The purpose of this study is to investigate the tire dynamic behavior in multiple case studies in which the transient characteristics are highly involved.
Journal Article

Anthropomimetic Traction Control: Quarter Car Model

Human expert drivers have the unique ability to combine correlated sensory inputs with repetitive learning to build complex perceptive models of the vehicle dynamics as well as certain key aspects of the tire-ground interface. This ability offers significant advantages for navigating a vehicle through the spatial and temporal uncertainties in a given environment. Conventional traction control algorithms utilize measurements of wheel slip to help insure that the wheels do not enter into an excessive slip condition such as burnout. This approach sacrifices peak performance to ensure that the slip limits are generic enough suck that burnout is avoided on a variety of surfaces: dry pavement, wet pavement, snow, gravel, etc. In this paper, a novel approach to traction control is developed using an anthropomimetic control synthesis strategy.
Journal Article

Vehicle System Simulator: Development and Validation

A graphical user interface (GUI) toolbox called Vehicle System Simulator (VSS) is developed in MATLAB to ease the use of this vehicle model and hopefully encourage its widespread application in the future. This toolbox uses the inherent MATLAB discrete-time solvers and is mainly based on Level-2 s-function design. This paper describes its built-in vehicle dynamics model based on multibody dynamics approach and nonlinear tire models, and traction/braking control systems including Cruise Control and Differential Braking systems. The built-in dynamics model is validated against CarSim 8 and the simulation results prove its accuracy. This paper illustrates the application of this new MATLAB toolbox called Vehicle System Simulator and discusses its development process, limitations, and future improvements.
Journal Article

Tire Traction of Commercial Vehicles on Icy Roads

Safety and minimal transit time are vital during transportation of essential commodities and passengers, especially in winter conditions. Icy roads are the worst driving conditions with the least available friction, leaving valuable cargo and precious human lives at stake. The study investigates the available friction at the tire-ice interface due to changes in key operational parameters. Experimental analysis of tractive performance of tires on ice was carried out indoor, using the terramechanics rig located at the Advanced Vehicle Dynamics Laboratory (AVDL) at Virginia Tech. The friction-slip ratio curves obtained from indoor testing were inputted into TruckSIM, defining tire behavior for various ice scenarios and then simulating performance of trucks on ice. The shortcomings of simulations in considering the effects of all the operational parameters result in differences between findings of indoor testing and truck performance simulations.
Technical Paper

Using Surface Texture Parameters to Relate Flat Belt Laboratory Traction Data to the Road

Indoor laboratory tire testing on flat belt machines and tire testing on the actual road yield different results. Testing on the machine offers the advantage of repeatability of test conditions, control of the environmental condition, and performance evaluation at extreme conditions. However, certain aspects of the road cannot be reproduced in the laboratory. It is thus essential to understand the connection between the machine and the road, as tires spend all their life on the road. This research, investigates the reasons for differences in tire performance on the test machine and the road. The first part of the paper presents a review on the differences between tire testing in the lab and on the road, and existing methods to account for differences in test surfaces.
Technical Paper

Study on the Effects of Rubber Compounds on Tire Performance on Ice

Mechanical and thermal properties of the rubber compounds of a tire play an important role in the overall performance of the tire when it is in contact with the terrain. Although there are many studies conducted on the properties of the rubber compounds of the tire to improve some of the tire characteristics such as the wear of the tread, there is a limited number of studies that focused on the performance of the tire when it is in contact with ice. This study is a part of a more comprehensive project looking into tire-ice performance and modeling. A significant part of this study is the experimental investigation of the effect of rubber compounds on tire performance in contact with ice. For this, four tires have been selected for testing. Three of them are completely identical in all tire parameters (such as tire dimensions), except for the rubber compounds. Several tests were conducted for the chosen tires in three modes: free rolling, braking, and traction.