Refine Your Search

Search Results

Viewing 1 to 8 of 8
Journal Article

Method for Estimating Time to Collision at Braking in Real-World, Lead Vehicle Stopped Rear-End Crashes for Use in Pre-Crash System Design

This study presents a method for determining the time to collision (TTC) at which a driver of the striking vehicle in a real-world, lead vehicle stopped (LVS) rear-end collision applied the brakes. The method employs real-world cases that were extracted from the National Automotive Sampling System / Crashworthiness Data System (NASS / CDS) years 2000 to 2009. Selected cases had an Event Data Recorder (EDR) recovered from the striking vehicle that contained pre-crash vehicle speed and brake application. Of 59 cases with complete EDR records, 12 cases (20%) of drivers appeared not to apply the brakes at all prior to the collision. The method was demonstrated using 47 rear-end cases in which there was driver braking. The average braking deceleration for those cases with sufficient vehicle speed information was found to be 0.52 g's. The average TTC that braking was initiated at was found to vary in the sample population from 1.1 to 1.4 seconds.
Journal Article

Linear Quadratic Game Theory Approach to Optimal Preview Control of Vehicle Lateral Motion

Vehicle stability is maintained by proper interactions between the driver and vehicle stability control system. While driver describes the desired target path by commanding steering angle and acceleration/deceleration rates, vehicle stability controller tends to stabilize higher dynamics of the vehicle by correcting longitudinal, lateral, and roll accelerations. In this paper, a finite-horizon optimal solution to vehicle stability control is introduced in the presence of driver's dynamical decision making structure. The proposed concept is inspired by Nash strategy for exactly known systems with more than two players, in which driver, commanding steering wheel angle, and vehicle stability controller, applying compensated yaw moment through differential braking strategy, are defined as the dynamic players of the 2-player differential linear quadratic game.
Journal Article

Using Objective Vehicle-Handling Metrics for Tire Performance Evaluation and Selection

This paper outlines the development of a simulation-based process for assessing the handling performance of a given set of tires on a specific vehicle. Based on force and moment data, a Pacejka tire model was developed for each of the five sets of tires used in this study. To begin with, simple handling metrics including under-steer gradient were calculated using cornering stiffness derived from the Pacejka model. This Pacejka tire model was subsequently combined with a 3DOF non-linear vehicle model to create a simulation model in MATLAB/Simulink®. Other handling metrics were calculated based on simulation results to step and sinusoidal (General Motors Company) steering inputs. Calculated performance metrics include yaw velocity overshoot, yaw velocity response time, lateral acceleration response time and steering sensitivity. In addition to this, the phase lag in lateral acceleration and yaw rate of the vehicle to a sinusoidal steering input were also calculated.
Journal Article

Characterization of Lane Departure Crashes Using Event Data Recorders Extracted from Real-World Collisions

Lane Departure Warning (LDW) is a production active safety system that can warn drivers of an unintended departure. Critical in the design of LDW and other departure countermeasures is understanding pre-crash driver behavior in crashes. The objective of this study was to gain insight into pre-crash driver behavior in departure crashes using Event Data Recorders (EDRs). EDRs are units equipped on many passenger vehicles that are able to store vehicle data, including pre-crash data in many cases. This study used 256 EDRs that were downloaded from GM vehicles involved in real-world lane departure collisions. The crashes were investigated as part of the NHTSA's NASS/CDS database years 2000 to 2011. Nearly half of drivers (47%) made little or no change to their vehicle speed prior to the collision and slightly fewer decreased their speed (43%). Drivers who did not change speed were older (median age 41) compared to those who decreased speed (median age 27).
Technical Paper

Vehicle Inertia Impact on Fuel Consumption of Conventional and Hybrid Electric Vehicles Using Acceleration and Coast Driving Strategy

In the past few years, the price of petroleum based fuels, especially vehicle fuels such as gasoline and diesel, have been increasing at a significant rate. Consequently, there is much more consumer interest related to reducing fuel consumption of conventional and hybrid electric vehicles (HEVs). The “pulse and glide” (PnG) driving strategy is first applied to a conventional vehicle to quantify the fuel consumption benefits when compared to steady state speed (cruising) conditions over the same time and distance. Then an HEV is modeled and tested to investigate if a hybrid system can further reduce fuel consumption with the proposed strategy. Note that the HEV used in this study has the advantage that the engine can be automatically shut off below a certain speed (∼40 mph, 64 kph) at low loads, however a driver must shut off the engine manually in a conventional vehicle to apply this driving strategy.
Technical Paper

Control Strategy Development for Parallel Plug-In Hybrid Electric Vehicle Using Fuzzy Control Logic

The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is currently developing a control strategy for a parallel plug-in hybrid electric vehicle (PHEV). The hybrid powertrain is being implemented in a 2016 Chevrolet Camaro for the EcoCAR 3 competition. Fuzzy rule sets determine the torque split between the motor and the engine using the accelerator pedal position, vehicle speed and state of charge (SOC) as the input variables. The torque producing components are a 280 kW V8 L83 engine with active fuel management (AFM) and a post-transmission (P3) 100 kW custom motor. The vehicle operates in charge depleting (CD) and charge sustaining (CS) modes. In CD mode, the model drives as an electric vehicle (EV) and depletes the battery pack till a lower state of charge threshold is reached. Then CS operation begins, and driver demand is supplied by the engine operating in V8 or AFM modes with supplemental or loading torque from the P3 motor.
Technical Paper

EcoRouting Strategy Using Variable Acceleration Rate Synthesis Methodology

This paper focuses on the analysis of an EcoRouting system with minimum and maximum number of conditional stops. The effect on energy consumption with the presence and absence of road-grade information along a route is also studied. An EcoRouting system has been developed that takes in map information and converts it to a graph of nodes containing route information such as speed limits, stop lights, stop signs and road grade. A variable acceleration rate synthesis methodology is also introduced in this paper that takes into consideration distance, acceleration, cruise speed and jerk rate as inputs to simulate driver behavior on a given route. A simulation study is conducted in the town of Blacksburg, Virginia, USA to analyze the effects of EcoRouting in different driving conditions and to examine the effects of road grade and stop lights on energy consumption.
Technical Paper

Methodology for Estimating the Benefits of Lane Departure Warnings using Event Data Recorders

Road departures are one of the most deadly crash modes, accounting for nearly one third of all crash fatalities in the US. Lane departure warning (LDW) systems can warn the driver of the departure and lane departure prevention (LDP) systems can steer the vehicle back into the lane. One purpose of these systems is to reduce the quantity of road departure crashes. This paper presents a method to predict the maximum effectiveness of these systems. Thirty-nine (39) real world crashes from the National Automotive Sampling System (NASS) Crashworthiness Data System (CDS) database were reconstructed using pre-crash velocities downloaded for each case from the vehicle event data recorder (EDR). The pre-crash velocities were mapped onto the vehicle crash trajectory. The simulations assumed a warning was delivered when the lead tire crossed the lane line. Each case was simulated twice with driver reaction times of 0.38 s and 1.36 s after which time the driver began steering back toward the road.