Refine Your Search

Topic

Author

Search Results

Journal Article

Location-Aware Adaptive Vehicle Dynamics System: Brake Modulation

2014-04-01
2014-01-0079
A Location-Aware Adaptive Vehicle Dynamics System (LAAVDS) is developed to assist the driver in maintaining vehicle handling capabilities through various driving maneuvers. An integral part of this System is an Intervention Strategy that uses a novel measure of handling capability, the Performance Margin, to assess the need to intervene. Through this strategy, the driver's commands are modulated to affect desired changes to the Performance Margin in a manner that is minimally intrusive to the driver's control authority. Real-time implementation requires the development of computationally efficient predictive vehicle models. This work develops one means to alter the future vehicle states: modulating the driver's brake commands. This control strategy must be considered in relationship to changes in the throttle commands. Three key elements of this strategy are developed in this work.
Journal Article

Location-Aware Adaptive Vehicle Dynamics System: Throttle Modulation

2014-04-01
2014-01-0105
A Location-Aware Adaptive Vehicle Dynamics System (LAAVDS) is developed to assist the driver in maintaining vehicle handling capabilities through various driving maneuvers. An Intervention Strategy uses a novel measure of handling capability, the Performance Margin, to assess the need to intervene. The driver's commands are modulated to affect desired changes to the Performance Margin in a manner that is minimally intrusive to the driver's control authority. Real-time implementation requires the development of computationally efficient predictive vehicle models which is the focus of this work. This work develops one means to alter the future vehicle states: modulating the driver's throttle commands. First, changes to the longitudinal force are translated to changes in engine torque based on the current operating state (torque and speed) of the engine.
Journal Article

Direct Fuel Injector Power Drive System Optimization

2014-04-01
2014-01-1442
The objective of this study is to optimize the injector power drive system for improved fuel injection quantity and timing control. The power drive system was optimized for improved injection repeatability under different operating conditions such as fuel supply pressures. A coupled simulation of injector electromagnetic, pintle (needle) rigid body motion and computational fluid dynamics (CFD) model was employed to generate the optimal values of the 1st stage current, the 1st stage on-time and the 2nd stage current. The simulation results were validated against the experimental data measured with a photo detector measurement system.
Journal Article

A Parallel Approach for Computing the Expected Value of Gathering Information

2015-04-14
2015-01-0436
It is important for engineering firms to be able to develop forecasts of recommended courses of action based on available information. In particular, engineering firms must be able to assess the benefit of performing information-gathering actions. For example, an automobile manufacturer may use a computer simulation of a hydraulic motor and pump in the design of a new vehicle. The model may contain random variables that can be more accurately determined through expensive information-gathering actions, e.g., physical experiments, surveys, etc. To decide whether to perform these information-gathering actions, the automobile manufacturer must be able to quantify the expected value to the firm of conducting them. However, the cost of computing the expected value of information (through optimization, Monte Carlo sampling, etc.) grows exponentially with the amount of information that is to be gathered and can often exceed the cost of actually gathering the information.
Technical Paper

The Prospect and Benefits of Using the Partial-Averaged Navier-Stokes Method for Engine Flows

2020-04-14
2020-01-1107
This paper presents calculations of engine flows by using the Partially-Averaged Navier Stokes (PANS) method (Girimaji [1]; [2]). The PANS is a scale-resolving turbulence computational approach designed to resolve large scale fluctuations and model the remainder with appropriate closures. Depending upon the prescribed cut-off length (filter width) the method adjusts seamlessly from the Reynolds-Averaged Navier-Stokes (RANS) to the Direct Numerical Solution (DNS) of the Navier-Stokes equations. The PANS method was successfully used for many applications but mainly on static geometries, e.g. Basara et al. [3]; [4]. This is due to the calculation of the cut-off control parameter which requires that the resolved kinetic energy is known and this is usually obtained by suitably averaging of the resolved field. Such averaging process is expensive and impractical for engines as it would require averaging per cycles.
Journal Article

Composing Tradeoff Studies under Uncertainty based on Parameterized Efficient Sets and Stochastic Dominance Principles

2012-04-16
2012-01-0913
Tradeoff studies are a common part of engineering practice. Designers conduct tradeoff studies in order to improve their understanding of how various design considerations relate to one another and to make decisions. Generally a tradeoff study involves a systematic multi-criteria evaluation of various alternatives for a particular system or subsystem. After evaluating these alternatives, designers eliminate those that perform poorly under the given criteria and explore more carefully those that remain. One limitation of current practice is that designers cannot combine the results of preexisting tradeoff studies under uncertainty. For deterministic problems, designers can use the Pareto dominance criterion to eliminate inferior designs. Prior work also exists on composing tradeoff studies performed under certainty using an extension of this criterion, called parameterized Pareto dominance.
Journal Article

Location-Aware Adaptive Vehicle Dynamics System: Concept Development

2014-04-01
2014-01-0121
One seminal question that faces a vehicle's driver (either human or computer) is predicting the capability of the vehicle as it encounters upcoming terrain. A Location-Aware Adaptive Vehicle Dynamics (LAAVD) System is developed to assist the driver in maintaining vehicle handling capabilities through various driving maneuvers. In contrast to current active safety systems, this system is predictive rather than reactive. This work provides the conceptual groundwork for the proposed system. The LAAVD System employs a predictor-corrector method in which the driver's input commands (throttle, brake, steering) and upcoming driving environment (terrain, traffic, weather) are predicted. An Intervention Strategy uses a novel measure of handling capability, the Performance Margin, to assess the need to intervene. The driver's throttle and brake control are modulated to affect desired changes to the Performance Margin in a manner that is minimally intrusive to the driver's control authority.
Technical Paper

Modification of the Internal Flows of Thermal Propulsion Systems Using Local Aerodynamic Inserts

2020-09-15
2020-01-2039
Modern thermal propulsion systems (TPS) as part of hybrid powertrains are becoming increasingly complex. They have an increased number of components in comparison to traditionally powered vehicles leading to increased demand in packaging requirements. Many of the components in these systems relate to achieving efficiency gains, weight saving and pollutant reduction. This includes turbochargers and diesel or gasoline particulate filters for example and these are known to be very sensitive to inlet boundary conditions. When overcoming packaging requirements, sub-optimal flow distributions throughout the TPS can easily occur. Moreover, the individual components are often designed in isolation assuming relatively flat and artificially quiescent inlet flow conditions in comparison to those they are actually presented with. Thus, some of the efficiency benefits are lost through reduced component aerodynamic efficiency.
Technical Paper

Phenomenological Modeling of Low-Temperature Advanced Low Pilot-Ignited Natural Gas Combustion

2007-04-16
2007-01-0942
Recently [1, 2, 3 and 4], the novel Advanced (injection) Low Pilot-Ignited Natural Gas (ALPING) low-temperature combustion (LTC) concept was demonstrated to yield very low NOx emissions (<0.2 g/kWh) with high fuel conversion efficiencies (>40%). In the ALPING-LTC concept, very small diesel pilot sprays (contributing ∼2-3 percent of total fuel energy) are injected early in the compression stroke (60°BTDC) to ignite lean, homogeneous natural gas-air mixtures. To simulate ALPING-LTC, a phenomenological thermodynamic model was developed. The cylinder contents were divided into an unburned zone containing fresh natural gas-air mixture, several packets containing diesel and entrained natural gas-air mixture, a flame zone, and a burned zone. The simulation explicitly accounted for pilot injection, spray entrainment, diesel ignition (with the Shell autoignition model), spray combustion of diesel and entrained natural gas, and premixed turbulent combustion of the natural gas-air mixture.
Technical Paper

Results from a Thermodynamic Cycle Simulation for a Range of Inlet Oxygen Concentrations Using Either EGR or Oxygen Enriched Air for a Spark-Ignition Engine

2009-04-20
2009-01-1108
An engine cycle simulation which included the second law of thermodynamics was used to examine the engine performance and the thermodynamic characteristics of a spark ignition engine as functions of the oxygen inlet concentration. A wide range of oxygen inlet concentrations (12% to 40% by volume) was considered. For oxygen inlet concentrations less than 21%(v), EGR was used, and for oxygen inlet concentrations greater than 21%(v), oxygen enriched inlet air was used. Two EGR configurations were considered: (1) cooled and (2) adiabatic. In general, engine efficiencies decreased, heat transfer increased, nitric oxide emissions increased, and the destruction of availability (exergy) decreased as the oxygen concentration increased.
Technical Paper

Performance Parameter Analysis of a Biodiesel-Fuelled Medium Duty Diesel Engine

2009-04-20
2009-01-0481
Biodiesel remains an alternative fuel of interest for use in diesel engines. A common characteristic of biodiesel, relative to petroleum diesel, is a lowered heating value (or energy content of the fuel). A lower heating value of the fuel would, presuming all other parameters are equal, result in decreased engine torque. Since engine torque is often user-demanded, the lower heating value of the fuel generally translates into increased brake specific fuel consumption. Several literature report this characteristic of biodiesel. In spite of the wealth of fuel consumption characteristic data available for biodiesel, it is not clear how other engine performance parameters may change with the use of biodiesel. Characterizing these parameters becomes complicated when considering the interactions of the various engine systems, such as a variable geometry turbocharger with exhaust gas recirculation.
Technical Paper

Closed Loop Transaxle Synchronization Control Design

2010-04-12
2010-01-0817
This paper covers the development of a closed loop transaxle synchronization algorithm which was a key deliverable in the control system design for the L3 Enigma, a Battery Dominant Hybrid Electric Vehicle. Background information is provided to help the reader understand the history that lead to this unique solution of the input and output shaft synchronizing that typically takes place in a manual vehicle transmission or transaxle when shifting into a gear from another or into a gear from neutral when at speed. The algorithm stability is discussed as it applies to system stability and how stability impacts the speed at which a shift can take place. Results are simulated in The MathWorks Simulink programming environment and show how traction motor technology can be used to efficiently solve what is often a machine design issue. The vehicle test bed to which this research is applied is a parallel biodiesel hybrid electric vehicle called the Enigma.
Technical Paper

Belt Wet Friction and Noise Study

2009-06-15
2009-01-1979
Serpentine belt system has been widely used to drive automotive accessories like power steering pump, alternator, and A/C compressor from a crankshaft pulley. Overload under severe conditions can lead to excessive slippage in the belt pulley interface in poorly designed accessory systems. This can lead to undesirable noise that increases warranty cost substantially. The mechanisms and data of these tribology performance, noise features and system response are of utmost interest to the accessory drive designers. As accessories belt systems are usually used in ambient condition, the presence of water on belt is unavoidable under the raining weather conditions. The presence of water in interface induces larger slippage as the water film in interface changes the friction mechanisms in rubber belt-pulley interface from coulomb friction to friction with mixed lubrication that has negative slope of coefficient of friction (cof) - velocity.
Technical Paper

Investigation of Proper Motor Drive Characteristics for Military Vehicle Propulsion

2003-06-23
2003-01-2296
Due to their harsh operating environments, military vehicle drive trains have special requirements. These special requirements are usually represented by hill climbing ability, obstacle negotiation, battlefield cross country travel, hard acceleration, high speed, etc. These special requirements need the vehicle drive train to have a wider torque and speed range characteristics than commercial vehicles. We have proved that larger constant power ratio in electric motor can significantly enhance the vehicle acceleration performance. In other words, for the same acceleration performance, large constant power ratio can minimize the power rating of the traction motor drive, thus minimizing the power rating of the power source (batteries for instance). Actually, extension of the constant power range can also significantly enhance the gradeability, which is crucial for military vehicles.
Technical Paper

Probability-Based Methods for Fatigue Analysis

1992-02-01
920661
Modern fatigue analysis techniques, that can provide reliable estimates of the service performance of components and structures, are finding increasing use in vehicle development programs. A major objective of such efforts is the prediction of the field performance of a fleet of vehicles as influenced by the host of design, manufacturing, and performance variables. An approach to this complex problem, based on the incorporation of probability theory in established life prediction methods, is presented. In this way, quantitative estimates of the lifetime distribution of a population are obtained based on anticipated, or specified, variations in component geometry, material processing sequences, and service loading. The application of this approach is demonstrated through a case study of an automotive transmission component.
Technical Paper

Thermodynamic Advantages of Low Temperature Combustion (LTC) Engines Using Low Heat Rejection (LHR) Concepts

2011-04-12
2011-01-0312
Low temperature combustion (LTC) modes for reciprocating engines have been demonstrated with relatively high thermal efficiencies. These new combustion modes involve various combinations of stratification, lean mixtures, high levels of exhaust gas recirculation (EGR), multiple injections, variable valve timings, two fuels, and other such features. LTC engines may be attractive in combination with low heat rejection (LHR) engine concepts. The current work is aimed at evaluating the thermodynamic advantages of such a LTC-LHR engine. A thermodynamic cycle simulation was used to evaluate the effect of cylinder wall temperature on the engine performance, emissions and second law characteristics. An automotive engine at 2000 rpm with a bmep of 900 kPa was considered. Both a conventional and a LTC design were compared. The LTC engine realized small gains in efficiency whereas the conventional engine did not realize any significant gains as the cylinder wall temperature was increased.
Technical Paper

A Simulation-Based Study on the Improvement of Semi-Truck Roll Stability in Roundabouts

2016-09-27
2016-01-8038
This paper studies the effect of different longitudinal load conditions, roundabout cross-sectional geometry, and different semi-truck pneumatic suspension systems on roll stability in roundabouts, which have become more and more popular in urban settings. Roundabouts are commonly designed in their size and form to accommodate articulated heavy vehicles (AHVs) by evaluating such affects as off-tracking. However, the effect of the roadway geometry in roundabouts on the roll dynamics of semi-tractors and trailers are equally important, along with their entry and exit configuration. , Because the effect of the roundabout on the dynamics of trucks is further removed from the immediate issues considered by roadway planner, at times they are not given as much consideration as other roadway design factors.
Technical Paper

Development of a Particulate Trapping System and Investigation of Effects of Viscosity of the Filter Media Using Experimental and Computational Methods

2017-03-28
2017-01-1320
A cost effective, portable particulate management system was developed, prototyped, and evaluated for further application and commercialization, which could remove and dispose particulate matter suspended in air efficiently and safely. A prototype of the present system was built for experimental assessment and validation. The experimental data showed that the developed particulate management system can effectively clean the air by capturing the particles inside it. Effects of viscosity of filter medium on the performance of the developed system were also discussed. The present system is very flexible, whose size and shape can be scaled and changed to be fit for different applications. Its manufacturing cost is less than $10. Based on the experimental validation results, it was found that the present system can be further developed, commercialized, and applied for a variety of industries.
Technical Paper

Use of an Engine Simulation to Study Low Heat Rejection (LHR) Concepts in a Multi-Cylinder Light-Duty Diesel Engine

2016-04-05
2016-01-0668
A comprehensive analysis of engine performance and fuel consumption was carried out to study Low Heat Rejection (LHR) concepts in the conventional light-duty diesel engine. From most previous studies on LHR diesel engines, thermal-barrier coatings (TBCs) have been recognized as a conventional way of insulating engine parts; while for the cases studied in this paper, the LHR concept is realized by altering engine coolant temperature (ECT). This paper presents engine simulation of a multi-cylinder, four-stroke, 1.9L diesel engine operating at 1500 rpm with five cases having different ECTs. The simulated results have been validated against experimental data. Calibration strategy for the engine simulation model is detailed in a systematic methodology for a better understanding of this simulation-development process. The calibrated model predicts the performance and fuel consumption within tolerated uncertainties.
Technical Paper

Study on Squeeze Mode Magneto-Rheological Engine Mount with Robust H-Infinite Control

2011-04-12
2011-01-0757
Magneto-rheological fluid squeeze mode investigations at CVeSS have shown that MR fluids show large force capabilities in squeeze mode. A novel MR squeeze mount was designed and built at CVeSS, and a dynamic mathematical model was developed, which considered the inertial effect and was validated by the test data. A variant engine mount that will be used for isolating vibration, based on the MR squeeze mode is proposed in the paper. The mathematical governing equations of the mount are derived to account for its operation with MR squeeze mode. The design method of a robust H✓ controller is addressed for the squeeze mount subject to parameter uncertainties in the damping and stiffness. The controller parameter can be derived from the solution of bilinear matrix inequalities (BMIs). The displacement transmissibility is constrained to be no more than 1.05 with this robust H✓ controller. The MR squeeze mount has a very large range of force used to isolate the vibration.
X