Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Monitoring Brake Wear with Acoustics

2021-08-31
2021-01-1053
A new approach for detecting problems with vehicle brakes by analyzing sounds emitted during braking events is proposed. Vehicle brakes emit acoustic energy as part of the braking process; the spectra of these sounds are highly dependent on the mechanical condition of the brake and can be used to detect problems. Acoustic theory indicates that as brake linings wear thinner the resonant frequency of the shoe or pad increases, potentially enabling the monitoring of lining wear through passive acoustic sensors. To test this approach, passive acoustic sensors were placed roadside at the exit of a transit bus facility for 9 months. The sensors collected almost 10,000 recordings of a fleet of 160 vehicles braking over a variety of conditions. Spectra of vehicles that had brake work performed during this period were analyzed to compare differences between new and worn friction linings.
Journal Article

Understanding Driver Perceptions of a Vehicle to Vehicle (V2V) Communication System Using a Test Track Demonstration

2011-04-12
2011-01-0577
Vehicle-to-vehicle (V2V) communication systems can enable a number of wireless-based vehicle features that can improve traffic safety, driver convenience, and roadway efficiency and facilitate many types of in-vehicle services. These systems have an extended communication range that can provide drivers with information about the position and movements of nearby V2Vequipped vehicles. Using this technology, these vehicles are able to communicate roadway events that are beyond the driver's view and provide advisory information that will aid drivers in avoiding collisions or congestion ahead. Given a typical communication range of 300 meters, drivers can potentially receive information well in advance of their arrival to a particular location. The timing and nature of presenting V2V information to the driver will vary depending on the nature and criticality of the scenario.
Journal Article

Field Demonstration of Heavy Vehicle Camera/Video Imaging Systems

2011-09-13
2011-01-2245
To help drivers monitor the road and to reduce blind spots, Camera/Video Imaging Systems (C/VISs) display live video from cameras mounted on the truck's exterior to drivers using displays inside the truck cabin. This study investigated drivers' performance with C/VISs in a real-world trucking operation. Twelve commercial drivers' performance with and without a C/VIS was continuously recorded while they each drove for four months. Half of the drivers used a commercially available C/VIS that had a side-view camera on each fender. The other drivers used an advanced C/VIS (A-C/VIS) that had side-view cameras, a rear-view camera, and night-vision capabilities. This paper presents the study's final results and expands on the preliminary results that were previously reported. Detailed analyses of drivers' involvement in Safety-Critical Events (SCEs), their lane change performance, and their opinions of the C/VISs are presented.
Technical Paper

Development of a Performance Specification for Indirect Visibility Systems on Heavy Trucks

2007-10-30
2007-01-4231
Approximately 28,000 crashes involving combination unit trucks occur each year when they are making lane changes, merges, or turns. One contributing factor in these crashes is inadequate visibility for truck drivers. Recent advances in video technology have heightened the prospect of improving commercial vehicle safety by improving drivers' vision around the truck. For such video systems to be implemented on heavy trucks, the systems/driver interface should be demonstrated as viable through research. This paper presents the Camera/Video Imaging Systems (C/VISs) developed at Virginia Tech Transportation Institute (VTTI), the methodology used to test them, and some results obtained.
Technical Paper

Methodological Approach for a Field Demonstration of a Camera/Video Imaging System for Heavy Vehicles

2009-10-06
2009-01-2930
Camera/Video Imaging Systems (C/VISs) display video captured from cameras mounted on the truck's fenders and trailer to drivers using displays mounted inside the truck cabin. C/VISs provide a countermeasure to blind-spot related crashes by allowing drivers to see objects not ordinarily visible by a typical mirror configuration. They also support drivers in determining the clearance between the trailer and an adjacent vehicle when performing a lane change. The National Highway Traffic Safety Administration (NHTSA) and the Federal Motor Carrier Safety Association (FMCSA) have collaboratively funded research on the development of C/VISs that operate during the day, as well as enhancing C/VISs to operate at night and in inclement weather. This paper presents the work performed in developing a C/VIS capable of being used in an eight-month technology field demonstration (TFD), which will allow the measurement of driver behavior with the C/VIS in a revenue-producing environment.
Technical Paper

Methodological Overview of the Drowsy Driver Warning System Field Operational Test

2004-10-26
2004-01-2718
To address the issue of fatigued truck drivers, the U.S. Department of Transportation sponsored research to develop a Drowsy Driver Warning System. This system has been under development for several years and is at a point where it is ready for a Field Operational Test. The experimental plan calls for 102 drivers, each operating one of 34 instrumented heavy trucks for 16 weeks. Each vehicle is instrumented with video cameras and a variety of sensors to capture driver input/performance. This paper describes the method being used to conduct the study, including an overview of the data collection instrumentation.
Journal Article

Predictive Maintenance of Commercial Vehicle Brakes using Acoustic Monitoring

2021-10-11
2021-01-1280
This study evaluated the performance of a new approach for detecting problems with commercial vehicle brakes based on the analysis of sounds emitted during braking. Commercial vehicle brakes emit ultrasonic energy inaudible to humans as part of the friction process, and the spectral distribution of these sounds is highly dependent on the mechanical condition of the brakes. Data collected from a commercial vehicle fleet found that the acoustic signature changes as friction linings wear. This conforms with the acoustic theory that the resonant frequency of an object increases with its decrease in mass. The use of this information to inform maintenance operations is promising in that the scheduling of visual brake inspections could be based on acoustic wear patterns rather than arbitrary time intervals and the observation of anomalous signals that might indicate more immediate concerns.
Journal Article

Field Study of Heavy Vehicle Crash Avoidance System Performance

2016-09-27
2016-01-8011
This study evaluated the performance of heavy vehicle crash avoidance systems (CASs) by collecting naturalistic driving data from 150 truck tractors equipped with Meritor WABCO OnGuardTM or Bendix® Wingman® AdvancedTM products. These CASs provide drivers with audio-visual alerts of potential conflicts, and can apply automatic braking to mitigate or prevent a potential collision. Each truck tractor participated for up to one year between 2013 and 2015. Videos of the forward roadway and drivers’ faces were collected along with vehicle network data while drivers performed their normal duties on revenue-producing routes. The study evaluated the performance of CAS activations by classifying them into three categories based on whether a valid object was being tracked and whether drivers needed to react immediately.
Journal Article

Enhanced Camera/Video Imaging Systems (E-C/VISs) on Heavy Vehicles

2008-10-07
2008-01-2627
Large trucks were involved in more than 26,000 crashes between April 2001 and December 2003 as a result of making lane changes, merges, and turns [1]. As an alternative to mirrors (surrogate system), or to be used in combination with mirrors (enhancement system), the industry has been developing Camera/Video Imaging Systems (C/VISs) directed toward improving visibility to the sides and rear of heavy vehicles. The current study describes development of an Enhanced C/VIS (E-C/VIS) directed at improving visibility in less favorable environmental conditions, such as nighttime and inclement weather.
X