Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Journal Article

Gasoline Fuel Injector Spray Measurement and Characterization - A New SAE J2715 Recommended Practice

2008-04-14
2008-01-1068
With increasingly stringent emissions regulations and concurrent requirements for enhanced engine thermal efficiency, a comprehensive characterization of the automotive gasoline fuel spray has become essential. The acquisition of accurate and repeatable spray data is even more critical when a combustion strategy such as gasoline direct injection is to be utilized. Without industry-wide standardization of testing procedures, large variablilities have been experienced in attempts to verify the claimed spray performance values for the Sauter mean diameter, Dv90, tip penetration and cone angle of many types of fuel sprays. A new SAE Recommended Practice document, J2715, has been developed by the SAE Gasoline Fuel Injection Standards Committee (GFISC) and is now available for the measurement and characterization of the fuel sprays from both gasoline direct injection and port fuel injection injectors.
Technical Paper

Thermal Analysis of an Electric Machine for a Hybrid Vehicle

2004-03-08
2004-01-0565
A twenty-five kilowatt (peak power for one minute), permanent magnet electric machine for a hybrid electric vehicle application was designed and tested. The electric machine is located in the clutch housing of an automatically shifted manual transmission and is subjected to 120 °C continuous ambient temperatures. The package constraints and duty cycle requirements resulted in an extremely challenging thermal design for an electric machine. The losses in the machine were predicted using models based on first principles and the heat transfer in the machine was modeled using computational fluid dynamics. The simulations were compared to test results over a variety of operating conditions and the results were used to validate the models. Parametric studies were conducted to evaluate the performance of potting materials and cooling topologies.
Technical Paper

Model-Based Analysis and Tuning of Electronic Throttle Controllers

2004-03-08
2004-01-0524
This paper describes two electronic throttle controllers of Visteon Corporation with one already in production and the other currently under development. Analysis and tuning of the two controllers are described. The general structure of the controllers consists of a reference shaping subsystem and a proportional-plus-integral-plus-derivative(PID) controller supplemented with additional terms that deal with the nonlinearility of the electronic throttle body. Due to a friction cancellation term in the controller that minimizes the nonlinearity of the system, linear system analysis techniques are applied. The transfer functions of the electronic throttle body at six different operating conditions are derived. Analysis of the closed-loop dynamics is performed based on the plant and the controller transfer-functions. Controller fine-tuning is performed using frequency response techniques, MATLAB simulations and testing on the actual system.
Technical Paper

Water Condensate Retention and “Wet” Fin Performance in Automotive Evaporators

2001-03-05
2001-01-1252
Water condensate retained inside an automotive evaporator has remained as one of the primary sources of unpleasant “odors”, which in turn can drive up the warranty cost for automotive manufacturers. The “wet” evaporator fin can also underperform due to the presence of condensate blocking the air passage. Moreover, condensate retention can be a potential factor of freezing up evaporators. Thus, an evaporator fin must be designed such that it can shed and drain water condensate as well as provide an excellent heat transfer capability. While the importance of water retention is well known, there seems lacking of a comprehensive way to evaluate the water retention characteristics of a particular product. In this work, attempts were made to answer four questions: (1) What is the mechanism that controls water condensate retention characteristics in an automotive evaporator? (2) Can different water retention evaluation methods reveal the same characteristics?
Technical Paper

Development of a Fuel Efficient Multipurpose 75W-90 Gear Lubricant

2003-10-27
2003-01-1992
Automotive gear oil development has expanded beyond the historical requirements of emphasizing wear protection to encompass modern needs for fuel economy and limited slip frictional properties. This paper describes the development process of a new generation, fuel efficient gear lubricant for use in light duty vehicles. A systematic formulation approach was used, encompassing fluid viscometrics and additive optimization. Performance testing in both laboratory and vehicle tests is described. Though standard GL-5 tests were used to confirm oxidation, wear and corrosion performance, emphasis is given to those methods used for optimizing fuel economy.
Technical Paper

Virtual Key Life Tests of Instrument Panels for Product Development

2004-03-08
2004-01-1482
Visteon has developed a CAE procedure to qualify instrument panel (IP) products under the vehicle key life test environments, by employing a set of CAE simulation and durability techniques. The virtual key life test method simulates the same structural configuration and the proving ground road loads as in the physical test. A representative dynamic road load profile model is constructed based on the vehicle proving ground field data. The dynamic stress simulation is realized by employing the finite element transient analysis. The durability evaluation is based on the dynamic stress results and the material fatigue properties of each component. The procedure has helped the IP engineering team to identify and correct potential durability problems at earlier design stage without a prototype. It has shown that the CAE virtual key life test procedure provides a way to speed up IP product development, to minimize prototypes and costs.
Technical Paper

Correlation Study of Exhaust Manifold - Lab Test Results vs Customer Fleet Results

2002-03-04
2002-01-1317
The purpose of this study is to develop specifically a correlation between Exhaust Manifold Cracking Laboratory Test results and 150,000 mile customer fleet usage test results. The study shows that the exhaust manifold design meets the reliability requirements of 10 years or 150,000 miles, given 90th percentile customer usage without an evidence of cracking or audible leaks. This correlation between the Lab Test and the customer Fleet results has been expressed as an acceleration factor. An acceleration factor is the ratio of how much quicker the engine dynamometer test ( i.e. Lab Test ) can accumulate the effect of customer usage over time versus the customers themselves. The acceleration factor is provided for useful life time period of 10 years or 150,000 miles. The recommended acceleration factor, determined in this study, is 38 to 1, comparing the engine dynamometer test ( i.e. Lab Test ) results to 150,000 mile modular truck customer fleet field results.
Technical Paper

Model-based Closed-loop Control of Urea SCR Exhaust Aftertreatment System for Diesel Engine

2002-03-04
2002-01-0287
Based on our error budget analysis, the urea SCR aftertreatment system is uncontrollable under EPA 2007-emission level without an effective closed-loop control strategy. The objective of the closed-loop control is to improve transient response as well as reduce the steady state control error. But the inherent large dead time in the urea SCR aftertreatment system makes the closed-loop control a challenge. In this paper, an innovative closed-loop control architecture is introduced, which combines model-based feedforward control with variable gain-scheduling feedback control. Transient response is improved with the inverse-dynamic feedforward control and the variable-gain closed-loop control. The steady-state response is improved with the closed-loop control. Based on this new strategy, a controller is designed and validated under the simulation and test cell environment. Comparison with the baseline open-loop controller is also conducted. Finally, some conclusions are presented.
Technical Paper

Accelerated Useful Life Testing and Field Correlation Methods

2002-03-04
2002-01-1175
The purpose of this paper is to present a common sense practical method for establishing and demonstrating reliability objectives. In particular, this paper will: describe an operational definition of “useful life”, describe an accelerated laboratory test procedure for demonstrating that products meet the useful life objective, and describe a method for demonstrating correlation between customer usage and laboratory testing.
Technical Paper

Occupant Knee Impact Simulations: A Parametric Study

2003-03-03
2003-01-1168
Occupant knee impact simulations are performed in the automotive industry as an integrated design process during the course of instrument panel (IP) development. All major automakers have different categories of dynamic testing methods as part of their design process in validating their designs against the FMVSS 208 requirement. This has given rise to a corresponding number of knee impact simulations performed at various stages of product development. This paper investigates the advantages and disadvantages of various types of these knee impact simulations. Only the knee load requirement portion of the FMVSS208 is considered in this paper.
Technical Paper

Broadband Noise Source Models as Aeroacoustic Tools in Designing Low NVH HVAC Ducts

2006-04-03
2006-01-1192
Computational Fluid Dynamics (CFD) is an integral part of product development at Visteon Climate Systems with a validated set of CFD tools for airflow and thermal management processes. As we increasingly build CAE capabilities to design not only thermal comfort, but quiet systems, developing noise prediction capabilities becomes a high priority. Two Broadband Noise Source (BNS) models will be presented, namely Proudman's model for quadrupole source and Curle's boundary layer model for dipole source. Both models are derived from Lighthill's acoustic analogy which is based on the Navier-Stokes equations. BNS models provide aeroacoustic tools that are effective in screening air handling systems with higher noise levels and identifying components or surfaces that generate most of the noise, hence providing opportunities for early design changes. In this paper, BNS models were used as aeroacoustic design tools to redesign an automotive HVAC center duct with high levels of NVH.
Technical Paper

Key Aspects of Electronics Automotive Components Testing

2013-10-07
2013-36-0569
Electronics components are estimated to be between 9 to 15 % of a total vehicle cost, and this trend will remain strong for the next years. The amount of electronics content in a vehicle has grown steadily since 1970's, and as a result, development challenges such as testing and validation are a key aspect of its overall development costs. Testing costs can amount easily to US$ 500 k in medium complex automotive parts of a vehicle (e.g. instrument cluster) depending on a specific OEM customer demand, and this on top of limited regional laboratory capacity can also lead to increased testing time. The goal of this paper is to outline key aspects of electronics in vehicle components testing, including overall costs and timing, and propose a lean approach to optimize such costs & timing. The key aspects of such optimization include not only resources, but also laboratories and upfront OEM customer planning.
Technical Paper

Equations for Physical Properties of Automotive Coolants

2003-03-03
2003-01-0532
1.0 During the warm up process of the coolant in automotive heater systems physical properties such as the density, dynamic viscosity, kinematic viscosity, specific heat and thermal conductivity vary with temperature. To conduct any heater analysis, therefore, it is essential that such variations with temperatures be evaluated. In the present paper a comprehensive literature search is conducted for the published physical properties of the automotive coolants ethylene glycol and propylene glycol. The data are analyzed and compared, and equations describing the variation of the above named physical properties with temperature are derived and presented. The effect of the temperature on the internal heat transfer coefficient is discussed. A comparison of the heat transfer performance between the two glycol coolants is presented. The temperature range studied extends from - 35 to at least 125 degree Celsius.
Technical Paper

A Dynamic Model of Automotive Air Conditioning Systems

2005-04-11
2005-01-1884
A dynamic computer model of automotive air conditioning systems was developed. The model uses simulation software for the coding of 1-D heat transfer, thermodynamics, fluid flow, and control valves. The same software is used to model 3-D solid dynamics associated with mechanical mechanisms of the compressor. The dynamics of the entire AC system is thus simulated within the same software environment. The results will show the models potential applications in component and system design, calibration and control.
Technical Paper

Effect of Post Brazed Flux Residues of CAB Evaporators on the Consistency of Conversion Coating

2005-04-11
2005-01-1773
Evaporators for automotive air-conditioning systems are being coated externally to improve corrosion resistance, water drainage, and reduce potential odor concerns. The coating durability and efficiency in achieving its corrosion resistance depends on the coating uniformity and adhesion characteristics. Good coating adhesion on aluminum surface can be achieved after freeing the surface from the oxide and flux residues. Evaporators manufactured by the Controlled Atmosphere Brazing (CAB) process have flux residue remaining on the surface, the presence of which interferes with the coating process and also affects the performance of coated components. A methodology to quantify the effect of high Nocolok flux residue on heat exchanger coating uniformity has been presented.
Technical Paper

CAE Considerations in the Modeling of Welded Joints

2005-04-11
2005-01-0512
Welding is one of the most commonly used fabrication method in various automotive applications. Welding is a metallurgical fusion process in which parts or work pieces to be joined are heated above their melting temperature and then solidified. Some of the effects of the welding include residual stresses and Heat Affected Zone (HAZ). A methodology is proposed to study the welding process using the commercial finite element software, ABAQUS. Non linear transient heat transfer analysis is used. Effects of heat energy input rate and heat input time on residual stresses and HAZ are determined.
Technical Paper

Vibration Test Specification for Automotive Products Based on Measured Vehicle Load Data

2006-04-03
2006-01-0729
A test load specification is required to validate an automotive product to meet the durability and design life requirements. Traditionally in the automotive industry, load specifications for design validation tests are directly given by OEMs, which are generally developed from an envelop of generic customer usage profiles and are, in most cases, over-specified. In recent years, however, there are many occasions that a proposed load specification for a particular product is requested. The particular test load specification for a particular product is generated based on the measured load data at its mounting location on the given type of vehicles, which contains more realistic time domain load levels and associated frequency contents. The measured time domain load is then processed to frequency domain test load data by using the fast Fourier transform and damage equivalent techniques.
Technical Paper

R134A Suction Line Heat Exchanger in Different Configurations of Automotive Air-Conditioning Systems

2001-05-14
2001-01-1694
A suction line heat exchanger (SLHX) transfers heat from the condenser outlet to the suction gas. In a TXV (thermostatic expansion valve) system, the performance improvement with a 60 to 80 % effective SLHX is expected to be on the order of 8 to 10 % for capacity, and 5 to 7 % for COP for high outdoor air temperatures of 43ºC. In a FOT (fixed orifice tube) system, the performance improvement was calculated to be about 10 to 15 %. The calculated improvements have been verified experimentally within a few percent.
Technical Paper

Fuel Economy Improvements through Improved Automatic Transmission Warmup - Stand Alone Oil to Air (OTA) Transmission Cooling Strategy with Thermostatic Cold Flow Bypass Valve

2001-05-14
2001-01-1760
The stand alone oil to air (OTA) transmission cooling strategy with thermostatic cold flow bypass valve has been shown to be an effective means of improving the warmup of an automatic transmission. Improving the system warmup rate of an automatic transmission significantly improves its efficiency by reducing losses resulting from extremely viscous transmission fluid and can allow for calibration changes that improve overall transmission performance. Improved transmission efficiency in turn allows for improved engine efficiency and performance. The improvements obtained from increased transmission and engine efficiency result in an overall increase in vehicle fuel economy. Fuel economy and consumption are important parameters considered by the vehicle manufacturer and the customer. Fuel economy can be considered as important as reliability and durability.
X