Refine Your Search

Search Results

Viewing 1 to 16 of 16
Technical Paper

Control Software Interface for Managing System Requirements

2004-03-08
2004-01-0363
Not all software tools are created equal and not all software tools are created to perform the same tasks. Therefore, different software tools are used to perform different tasks. However, being able to share the information between the different software tools, without having to manually re-enter (duplicate) any of the information, can save a lot of time and improve the quality of the product. The control software interface presented in this paper, allows system engineers to exchange data between software tools in an efficient manner which maximizes each tools capabilities and ultimately reduces development time and improves the quality of the product.
Technical Paper

A Computer Aided Optimization Tool to Design Electromagnetic Retarders

2004-03-08
2004-01-0382
The work presented here outlines the development of a robust CAO tool for optimal design of electromagnetic retarder machines. The developed EM-CAO tool is then used to perform a wide variety of CAE/CAO tasks, from automatically computing the torque versus rpm performance curves of the EM retarder to performing optimization. Two specific examples of optimal design of the EM retarder are reported. Through the use of a task manager/optimizer repetitive jobs are fully automated thereby making the analysis and optimization of electromagnetic retarders faster and user-friendlier.
Technical Paper

Design Review a Tool for Product Development Quality Assurance

2003-11-18
2003-01-3670
Same of the more enticing and productive opportunities to a useful work in product assurance are those of influencing the design of a product. The primary concern of design assurance is preventing or correcting those design errors that lead to poor product integrity. One of the tools used by the development teams in many organizations is the Design Review. The impact in cost and quality is directly affected by the correct utilization of the tool.
Technical Paper

Finite Element Model Correlation of an Automotive Propshaft with Internal and External Dampers

2004-03-08
2004-01-0862
In the absence of prototypes, analytical methods such as finite element analysis are very useful in resolving noise and vibration problems, by predicting dynamic behavior of the automotive components and systems. Finite Element Analysis (FEA) is a simulation technique and involves making assumptions that affect analytical results. Acceptance and use of these results is greatly enhanced through test validation. In this paper, dynamic behavior of the automotive propshaft equipped with cardboard liner and torsional damper is investigated. The finite element model is validated at both component and subsystem levels using frequency response functions. Effects of the cardboard liner and torsional damper on the propshaft bending, torsional and breathing frequencies are studied under free-free boundary conditions. Effects of the U-Joint stiffness along with other design variables on the driveshaft dynamic behavior are also studied.
Technical Paper

An Overview of Hardware-In-the-Loop Testing Systems at Visteon

2004-03-08
2004-01-1240
This paper discusses our experiences on the implementation and benefits of using the Hardware-In-the-Loop (HIL) systems for Powertrain control system software verification and validation. The Visteon HIL system integrated with several off-the-shelf diagnostics and calibration tools is briefly explained. Further, discussions on test automation sequence control and failure insertion are outlined The capabilities and advantages of using HIL for unit level software testing, open loop and closed-loop system testing, fault insertion and test automation are described. HIL also facilitates Software and Hardware Interface validation testing with low-level driver and platform software. This paper attempts to show the experiences with and capabilities of these HIL systems.
Technical Paper

Non-Linear Analysis of Tunable Compression Bushing for Stabilizer Bars

2004-03-08
2004-01-1548
Stabilizer bars in a suspension system are supported with bushings by a frame structure. To prevent the axial movement of the stabilizer bar within the bushing, several new stabilizer bar-bushing systems have been developed. The new systems introduce permanent compressive force between the bar and the bushing thereby preventing the relative movement of the bar within the bushing. This mechanical bond between the bar and the bushing can eliminate features such as grippy flats, collars etc. In addition, by controlling the compression parameters, the properties of the bushing such as bushing rates can be tuned and hence can be used to improve the ride and handling performance of the vehicle. In this paper, nonlinear CAE tools are used to evaluate one such compressively loaded bushing system. Computational difficulties associated with modeling such a system are discussed.
Technical Paper

Automated Finite Element Analysis of Fuel Rail Assemblies with the use of Knowledge Based Engineering Tools

2002-01-04
2002-01-1244
Realizing the value of knowledge, corporations are turning to Knowledge Based Engineering (KBE) as a design process. A fuel rail KBE tool was created at Visteon with the purpose of increasing knowledge retention and delivering knowledge based designs to the customer much quicker than with conventional methods. Currently, both engineers and CAD designers are using the Fuel Rail KBE Modeler at Visteon. It has been used on many vehicle programs and has saved the company countless person-hours of development time. The Fuel Rail KBE Modeler is a powerful tool that saves resources through automation of both the design and analysis processes. This paper documents the incorporation of automated FEA capability into the KBE environment.
Technical Paper

GENPAD® - Ergonomic Packaging

2002-03-04
2002-01-1241
GENPAD® is a knowledge-based, three-dimensional modeling computer tool developed by Visteon to create occupant-friendly interiors. GENPAD quickly and easily produces zones to evaluate ergonomic aspects of vehicle interiors such as reach, clearance, vision, and reflection. These zones are produced from automated design studies based on experience and engineering standards accepted by the automotive industry. Without GENPAD, a single study requires an experienced engineer 4-6 hours to complete. Multiple studies require several engineers weeks to perform. The methods used are also error-prone due to complex instructions. To overcome these challenges, GENPAD provides over 50 ergonomic packaging studies that produce accurate results in minutes, not weeks, every time.
Technical Paper

A Correlation Study of Computational Techniques to Model Engine Air Induction System Response Including BEM, FEM and 1D Methods

2003-05-05
2003-01-1644
Induction noise, which radiates from the open end of the engine air induction system, can be of significant importance in reducing vehicle interior noise and tuning the interior sound to meet customer expectations. This makes understanding the source noise critical to the development of the air induction system and the vehicle interior sound quality. Given the ever-decreasing development times, it is highly desirable to use computer-aided engineering (CAE) tools to accelerate this process. Many tools are available to simulate induction noise or, more generally, duct acoustics. The tools vary in degrees of complexity and inherent assumptions. Three-dimensional tools will account for the most general of geometries. However, it is also possible to model the duct acoustics with quasi-three-dimensional or one-dimensional tools, which may be faster as well.
Technical Paper

Bushing Characteristics of Stabilizer Bars

2003-03-03
2003-01-0239
A stabilizer bar in a suspension system is useful for preventing excessive rolls in vehicle maneuvers like cornering. Stabilizer bars are supported with bushings by either a frame or a subframe. To prevent the axial movement of the stabilizer bar within the bushing, features like add on collars, upset rings, grippy flats etc. are used on the stabilizer bar. At Visteon Corporation, several new stabilizer bar - bushing systems are developed where such axial movement is prevented by the use of compressive force. Relative merits of different stabilizer bar - bushing systems are compared in terms of roll stiffness and maximum stress on the bar through the use of finite elements.
Technical Paper

Development of Modular Electrical, Electronic, and Software System Architectures for Multiple Vehicle Platforms

2003-03-03
2003-01-0139
Rising costs continue to be a problem within the automotive industry. One way to address these rising costs is through modularity. Modular systems provide the ability to achieve product variety through the combination and standardization of components. Modular design approaches used in development of vehicle electrical, electronic, and software (EES) systems allow sharing of architectures/modules between different product lines (vehicles). This modular design approach may provide economies of scale, reduced development time, reduced order lead-time, easier product diagnostics, maintenance and repair. Other benefits of this design approach include development of a variety of EES systems through component swapping and component sharing. In this paper, new optimization algorithms and software tools are presented that allow vehicle EES system design engineers to develop modular architectures/modules that can be shared across vehicle platforms (for OEMs) and across OEMs (for suppliers).
Technical Paper

Improved Hydraulic Power Steering Pump Design Using Computer Tools

2005-04-11
2005-01-1269
A hydraulic steering pump system will be considered in this report. The objective is to improve the design of a specific power steering pump using computational fluid dynamics (CFD) tools. The first part of this report deals with a pump oil seal leak. The thermal and fluid environments have been simulated. A variable fluid viscosity is used, showing a 15-20% increase in peak temperature. Potential improvements in product design have been suggested. The second part deals with using computer tools to reduce redundant testing. This includes use of parametric approach towards optimization. A rotating grid approach (basic moving mesh technique) is used.
Technical Paper

Robustness Considerations in the Design of a Stabilizer Bar System

2005-04-11
2005-01-1718
Modern automobiles utilize stabilizer bars to increase vehicle roll stiffness. Stabilizer bars are laterally mounted torsional springs which resist vertical displacement of the wheels relative to one another. A stabilizer bar is constructed in such a way that it will meet package constraints and fatigue requirements. In order to design a robust stabilizer bar, Taguchi's “Design of Experiment method” is used. The objective of this paper is to develop a robust stabilizer bar design that will maximize the fatigue life and the roll stiffness while minimizing weight. This study is based on results obtained by CAE analysis.
Technical Paper

Designing a Tuned Torsional Damper for Automotive Applications Using FEA and Optimization

2005-05-16
2005-01-2293
Tuned mass dampers are frequently used in vehicles to resolve vibration issues arising from problematic torsional modes. The design of a tuned damper is straightforward, but evaluating its effect on other system modes is time consuming. An upfront design tool will accelerate the process of designing and evaluating the damper's affect on system level dynamic characteristics. Computer aided engineering tools have been developed to design a tuned torsional damper using two different approaches. In the first approach, a two-degree of freedom torsional system model is utilized. In the second approach, a detailed finite element model of a driveline system is considered. In the second approach, the effect of the damper to the vehicle driveline system response at the hypoid pinion nose and other desired locations is studied to assess the effectiveness of the damper design. In both approaches, the damper rotational inertia is considered as a design variable.
Technical Paper

Development and Implementation of a Tool for Modeling Driveline Systems

2000-12-04
2000-01-3525
In order to facilitate the modeling of vehicle drivelines in ADAMS, an ADAMS/View driveline tool was developed with the aid of Mechanical Dynamics, Inc (MDI). Known as Visteon Axle & Driveline Simulation-Dynamics (VADSIM-DYNA) this tool is used to supply customers with driveline models for use in their full vehicle modeling as well as for predicting forces in the driveline. Of specific interest is a method for calculating the mesh point of a hypoid gear set using the geometry of the ring and pinion gears, and a custom force statement for calculation of the mesh point reactions at the center of gravity for both the pinion and ring gears. With the introduction of ADAMS/Driveline, The comapny has worked with MDI to implement VADSIM-DYNA into the base product. With the aid of VADSIM-DYNA the ability to provide customers with ADAMS models of driveline components and systems has been greatly enhanced.
Technical Paper

Test Strategy for Linux based Platforms using Open Source Tools

2016-04-05
2016-01-0053
Today open source software is widely used in different domains like Desktop systems, Consumer electronics (smart phones, TV, washing machines, camera, printers, smart watches), Automotive, Automation etc. With the increased involvement of the open source software in the different domains including the safety critical ones, there has been a requirement of the well-defined test strategy to test and verify such systems. Currently there are multiple open source tools and frameworks to choose from. The paper describes the various open source test strategies and tools available to qualify such systems, their features, maintenance, community support, advantages and disadvantages. Target audience would be the software engineers, program managers, using an open source stack for the product development.
X