Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Broadband Noise Source Models as Aeroacoustic Tools in Designing Low NVH HVAC Ducts

Computational Fluid Dynamics (CFD) is an integral part of product development at Visteon Climate Systems with a validated set of CFD tools for airflow and thermal management processes. As we increasingly build CAE capabilities to design not only thermal comfort, but quiet systems, developing noise prediction capabilities becomes a high priority. Two Broadband Noise Source (BNS) models will be presented, namely Proudman's model for quadrupole source and Curle's boundary layer model for dipole source. Both models are derived from Lighthill's acoustic analogy which is based on the Navier-Stokes equations. BNS models provide aeroacoustic tools that are effective in screening air handling systems with higher noise levels and identifying components or surfaces that generate most of the noise, hence providing opportunities for early design changes. In this paper, BNS models were used as aeroacoustic design tools to redesign an automotive HVAC center duct with high levels of NVH.
Technical Paper

CAE Considerations in the Modeling of Welded Joints

Welding is one of the most commonly used fabrication method in various automotive applications. Welding is a metallurgical fusion process in which parts or work pieces to be joined are heated above their melting temperature and then solidified. Some of the effects of the welding include residual stresses and Heat Affected Zone (HAZ). A methodology is proposed to study the welding process using the commercial finite element software, ABAQUS. Non linear transient heat transfer analysis is used. Effects of heat energy input rate and heat input time on residual stresses and HAZ are determined.
Technical Paper

Thermal Analysis of an Electric Machine for a Hybrid Vehicle

A twenty-five kilowatt (peak power for one minute), permanent magnet electric machine for a hybrid electric vehicle application was designed and tested. The electric machine is located in the clutch housing of an automatically shifted manual transmission and is subjected to 120 °C continuous ambient temperatures. The package constraints and duty cycle requirements resulted in an extremely challenging thermal design for an electric machine. The losses in the machine were predicted using models based on first principles and the heat transfer in the machine was modeled using computational fluid dynamics. The simulations were compared to test results over a variety of operating conditions and the results were used to validate the models. Parametric studies were conducted to evaluate the performance of potting materials and cooling topologies.
Technical Paper

Effect of Post Brazed Flux Residues of CAB Evaporators on the Consistency of Conversion Coating

Evaporators for automotive air-conditioning systems are being coated externally to improve corrosion resistance, water drainage, and reduce potential odor concerns. The coating durability and efficiency in achieving its corrosion resistance depends on the coating uniformity and adhesion characteristics. Good coating adhesion on aluminum surface can be achieved after freeing the surface from the oxide and flux residues. Evaporators manufactured by the Controlled Atmosphere Brazing (CAB) process have flux residue remaining on the surface, the presence of which interferes with the coating process and also affects the performance of coated components. A methodology to quantify the effect of high Nocolok flux residue on heat exchanger coating uniformity has been presented.
Technical Paper

Equations for Physical Properties of Automotive Coolants

1.0 During the warm up process of the coolant in automotive heater systems physical properties such as the density, dynamic viscosity, kinematic viscosity, specific heat and thermal conductivity vary with temperature. To conduct any heater analysis, therefore, it is essential that such variations with temperatures be evaluated. In the present paper a comprehensive literature search is conducted for the published physical properties of the automotive coolants ethylene glycol and propylene glycol. The data are analyzed and compared, and equations describing the variation of the above named physical properties with temperature are derived and presented. The effect of the temperature on the internal heat transfer coefficient is discussed. A comparison of the heat transfer performance between the two glycol coolants is presented. The temperature range studied extends from - 35 to at least 125 degree Celsius.
Technical Paper

Water Condensate Retention and “Wet” Fin Performance in Automotive Evaporators

Water condensate retained inside an automotive evaporator has remained as one of the primary sources of unpleasant “odors”, which in turn can drive up the warranty cost for automotive manufacturers. The “wet” evaporator fin can also underperform due to the presence of condensate blocking the air passage. Moreover, condensate retention can be a potential factor of freezing up evaporators. Thus, an evaporator fin must be designed such that it can shed and drain water condensate as well as provide an excellent heat transfer capability. While the importance of water retention is well known, there seems lacking of a comprehensive way to evaluate the water retention characteristics of a particular product. In this work, attempts were made to answer four questions: (1) What is the mechanism that controls water condensate retention characteristics in an automotive evaporator? (2) Can different water retention evaluation methods reveal the same characteristics?
Technical Paper

R134A Suction Line Heat Exchanger in Different Configurations of Automotive Air-Conditioning Systems

A suction line heat exchanger (SLHX) transfers heat from the condenser outlet to the suction gas. In a TXV (thermostatic expansion valve) system, the performance improvement with a 60 to 80 % effective SLHX is expected to be on the order of 8 to 10 % for capacity, and 5 to 7 % for COP for high outdoor air temperatures of 43ºC. In a FOT (fixed orifice tube) system, the performance improvement was calculated to be about 10 to 15 %. The calculated improvements have been verified experimentally within a few percent.
Technical Paper

A Dynamic Model of Automotive Air Conditioning Systems

A dynamic computer model of automotive air conditioning systems was developed. The model uses simulation software for the coding of 1-D heat transfer, thermodynamics, fluid flow, and control valves. The same software is used to model 3-D solid dynamics associated with mechanical mechanisms of the compressor. The dynamics of the entire AC system is thus simulated within the same software environment. The results will show the models potential applications in component and system design, calibration and control.