Refine Your Search

Topic

Search Results

Viewing 1 to 15 of 15
Technical Paper

Optimizing the Effects of Body Attachment Stiffness on Steering Column In-Vehicle Modes

2001-03-05
2001-01-0041
This paper presents an unambiguous and intuitive method for identification of steering column resonant (SCR) mode of vibration. One simple but overlooked technique to determine the SCR mode in-vehicle is to provide local stiffnesses of the body locations where the Instrument Panel (IP) attaches, to the IP suppliers to be used in their design and development. This paper describes how this technique is useful in predicting the first few important in-vehicle steering column modes for different classes of vehicles, with examples presented in each class. The results obtained from such analyses are compared against those from direct in-buck simulations. This technique is not limited to its application in developing IP systems, but can easily be extended to include other systems such as seats, fuel tanks, etc. Also it is shown that a design optimization analysis may be performed using these attachment stiffnesses as design variables resulting in a system level solution.
Technical Paper

EVOP Design of Experiments

2003-03-03
2003-01-1015
Evolutionary Operation (EVOP) experimental design using Sequential Simplex method is an effective and robust means for determining the ideal process parameter (factor) settings to achieve optimum output (response) results. EVOP is the methodology of using on-line experimental design. Small perturbations to the process are made within allowable control plan limits, to minimize any product quality issues while obtaining information for improvement on the process. It is often the case in high volume production where issues exist, however off-line experimentation is not an option due to production time, the threat of quality issues and costs. EVOP leverages production time to arrive at the optimum solution while continuing to process saleable product, thus substantially reducing the cost of the analysis.
Technical Paper

Key Aspects of Electronics Automotive Components Testing

2013-10-07
2013-36-0569
Electronics components are estimated to be between 9 to 15 % of a total vehicle cost, and this trend will remain strong for the next years. The amount of electronics content in a vehicle has grown steadily since 1970's, and as a result, development challenges such as testing and validation are a key aspect of its overall development costs. Testing costs can amount easily to US$ 500 k in medium complex automotive parts of a vehicle (e.g. instrument cluster) depending on a specific OEM customer demand, and this on top of limited regional laboratory capacity can also lead to increased testing time. The goal of this paper is to outline key aspects of electronics in vehicle components testing, including overall costs and timing, and propose a lean approach to optimize such costs & timing. The key aspects of such optimization include not only resources, but also laboratories and upfront OEM customer planning.
Technical Paper

Application of DOE Methods to RPM-Domain Data for Hydraulic Steering Pump NVH Improvement

2003-05-05
2003-01-1431
The present work demonstrates the application of Design of Experiments (DOE) statistical methods to the design and optimization of a hydraulic steering pump for NVH performance. DOE methods were applied to RPM-domain data to examine the effect of several different factors, as well as the interactions between these factors, on pump NVH. Whereas most DOE analyses typically consider only a single response variable, the present work considered multiple response variables. Specifically, pump NVH performance curves for several pump rotational orders over a range of shaft speeds were analyzed. Thus, it was possible to determine the effect of the factors in question over the entire speed range of pump operation, rather than a single speed or setting. Statistical methods were applied to determine which factors and interactions had a significant effect on pump NVH. These factors were used to construct an empirical mathematical prediction model for NVH performance.
Technical Paper

Development of a Fuel Efficient Multipurpose 75W-90 Gear Lubricant

2003-10-27
2003-01-1992
Automotive gear oil development has expanded beyond the historical requirements of emphasizing wear protection to encompass modern needs for fuel economy and limited slip frictional properties. This paper describes the development process of a new generation, fuel efficient gear lubricant for use in light duty vehicles. A systematic formulation approach was used, encompassing fluid viscometrics and additive optimization. Performance testing in both laboratory and vehicle tests is described. Though standard GL-5 tests were used to confirm oxidation, wear and corrosion performance, emphasis is given to those methods used for optimizing fuel economy.
Technical Paper

Optimization and Robust Design of Heat Sinks for Automotive Electronics Applications

2004-03-08
2004-01-0685
The increasing power requirement for automotive electronics (radios, etc.), combined with ever-shrinking size and weight allowances, is creating a greater need for optimization and robust design of heat sinks. Not only does a heat sink directly affect the overall performance and reliability of a specific electronics application, but a well-designed, optimized heat sink can have other benefits - such as eliminating the requirement for special fans, reducing weight of the application, eliminating additional heat sink support structures, etc. Optimizing heat sink efficiency and thermal performance offers a challenge, due to the many competing design requirements. These requirements include effecting greater temperature reductions, accommodating vehicle packaging requirements and size limitations, generating a uniform heat distribution, etc., and all the while reducing the heat sink cost.
Technical Paper

Combining CAE and Experimental Techniques to Develop Optimal Defrost / Demist Performance in a Vehicle

2004-03-08
2004-01-1506
Customer clinics and surveys have revealed the increased importance to the customer of good defrost and demist performance in their vehicle. Achieving this level of performance, within the time and cost constraints of a modern vehicle development program, places increased reliance on computational (CAE) techniques. However, this paper describes how the optimum development process should be to combine this reliance upon CAE methods with a newly developed experimental technique. This new laser Doppler velocimetry (LDV) based methodology is employed at all stages of the development process and complements the CAE techniques perfectly. The end result is optimized airflow management within the vehicle cabin – essential if good defrost and demist performance is to be achieved in a vehicle.
Technical Paper

Optimal Design of Roller One Way Clutch for Starter Drives

2004-03-08
2004-01-1151
The starter drive clutch is a one way roller clutch and a key component in a starter motor that is used to crank internal combustion engines. The starter drive clutch transmits torque from an electrical motor to a ring gear mounted on a cranking shaft in an engine thus cranks the engine. The clutch also prevents the whole starter from damage caused by extremely high load and/or extremely high speed applied to the starter pinion from the engine. Drive slippage and barrel cracking are two major failure modes for the starter drive[1]. Insufficient torque capacity results in drive slippage while excessive high hoop stress on the clutch barrel ring causes barrel crack. To eliminate drive slippage failure, the clutch should be designed with high torque capacity. High torque capacity, however, is a cause of high hoop stress on the barrel that may result in the cracked barrel failure. Higher torque capacity and lower hoop stress are two completely opposite design directions.
Technical Paper

A Computer Aided Optimization Tool to Design Electromagnetic Retarders

2004-03-08
2004-01-0382
The work presented here outlines the development of a robust CAO tool for optimal design of electromagnetic retarder machines. The developed EM-CAO tool is then used to perform a wide variety of CAE/CAO tasks, from automatically computing the torque versus rpm performance curves of the EM retarder to performing optimization. Two specific examples of optimal design of the EM retarder are reported. Through the use of a task manager/optimizer repetitive jobs are fully automated thereby making the analysis and optimization of electromagnetic retarders faster and user-friendlier.
Technical Paper

A Virtual Testing Methodology for Automotive Concept Product Design

2002-03-04
2002-01-1176
The process for accurately estimating product reliability early in the development process can be a difficult and costly task. Traditional methods like Reliability Prediction Models and Life Testing Strategies yield beneficial results when relative information is known about the product that is to be analyzed. When there is minimal information known (prior failure rates…) such a new concept design these above reliability methods have limitations. For these cases a Virtual Testing Strategies have proven to yield valuable results. This paper will demonstrate a reliability analysis procedure for a new automotive concept design. This analysis procedure composes of a mathematical model, model validation, parameter diagram, design of experiment (DOE), response surface, and optimization.
Technical Paper

Reducing Bolt-up Distortion of a Conventional Brake Rotor by Optimization

2005-04-11
2005-01-0793
Although not completely understood, rotor distortion due to bolt-up is an issue commonly found in conventional brake rotor design. In this paper, bolt-up is addressed by utilizing optimization and contact analysis methods. These methods give greater insight to the contributing factors that influence bolt-up distortion. In particular, the optimization method defines the approximate geometric shape required for a brake rotor based on optimizing one or more variables. By utilizing the non-linear contact analysis method, the results from the optimization analysis are validated. In general, the results show that bolt-up distortion is not significantly affected by changing design features, variables or combinations of design features and variables. However, significant improvement in bolt-up distortion is noticed when changes are made to the brake rotor and the wheel bearing hub.
Technical Paper

Integrate Structural Optimization into Upfront Carbon Canister Component Design Process

2005-04-11
2005-01-1066
An effort to integrate a structural optimization process into the carbon canister bracket design is presented to demonstrate the benefits of an upfront Computer-Aided Engineering (CAE) driven design. Structural optimization methods - including topology, shape, and size optimization - are used to develop the injection molded plastic carbon canister bracket. Furthermore, the incorporation of the Knowledge Base Engineering (KBE) features in the design process not only accelerates the design process but also ease manufacturing feasibility. Even though topology optimization has been widely used to explore the initial topological designs of different products, it is still a great challenge to explore shell like structure designs with 3D solid design package spaces using topology optimization method.
Technical Paper

Vibration Assessment of a Slip-in-Tube Propshaft Through Correlated Analytical Model

2003-05-05
2003-01-1481
Analytical methods are used extensively in the automotive industry to validate the feasibility of component and assembly designs and their dynamic behavior. Correlation of analytical models with test data is an important step in this process. This paper discusses the Finite Element model of an innovative Slip-in-Tube Propshaft design. The Slip-in-Tube joint (slip joint) poses challenges for its dynamic simulation. This paper discusses the methods of simulating the joint and correlating it to experimental results. Also, the Noise and Vibration (NVH) characteristics of the Slip-in-Tube Propshaft design. In this paper, a Finite Element model of the proposed propshaft is developed using shell and beam element formulations. Each model is verified to optimize the feasibility of using accurate and computationally efficient elements for the dynamic analysis.
Technical Paper

Development of Modular Electrical, Electronic, and Software System Architectures for Multiple Vehicle Platforms

2003-03-03
2003-01-0139
Rising costs continue to be a problem within the automotive industry. One way to address these rising costs is through modularity. Modular systems provide the ability to achieve product variety through the combination and standardization of components. Modular design approaches used in development of vehicle electrical, electronic, and software (EES) systems allow sharing of architectures/modules between different product lines (vehicles). This modular design approach may provide economies of scale, reduced development time, reduced order lead-time, easier product diagnostics, maintenance and repair. Other benefits of this design approach include development of a variety of EES systems through component swapping and component sharing. In this paper, new optimization algorithms and software tools are presented that allow vehicle EES system design engineers to develop modular architectures/modules that can be shared across vehicle platforms (for OEMs) and across OEMs (for suppliers).
Technical Paper

Designing a Tuned Torsional Damper for Automotive Applications Using FEA and Optimization

2005-05-16
2005-01-2293
Tuned mass dampers are frequently used in vehicles to resolve vibration issues arising from problematic torsional modes. The design of a tuned damper is straightforward, but evaluating its effect on other system modes is time consuming. An upfront design tool will accelerate the process of designing and evaluating the damper's affect on system level dynamic characteristics. Computer aided engineering tools have been developed to design a tuned torsional damper using two different approaches. In the first approach, a two-degree of freedom torsional system model is utilized. In the second approach, a detailed finite element model of a driveline system is considered. In the second approach, the effect of the damper to the vehicle driveline system response at the hypoid pinion nose and other desired locations is studied to assess the effectiveness of the damper design. In both approaches, the damper rotational inertia is considered as a design variable.
X