Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Experimental Identification of the Detachment Point on the ACHEON Thrust-Vectoring Nozzle

Thrust vectoring is an interesting propulsion solution in aeronautic applications due to its fast response, improving aircraft's performance for take-off, landing and flight, and enabling Short/Vertical Take-Off and Landing (S/VTOL). In this context, an attempt to design a radically new concept of thrust vectoring nozzle is in current development. This novel nozzle, called ACHEON, bases the jet deviation control on the interaction of two primary jets of different velocities, where the one with higher velocity entrains the one with lower velocity. Two cylindrical walls are positioned after the two air jets mixing. If the inlet conditions are not symmetric, the Coanda effect on the walls forces the resulting air jet to divert from the symmetry axis. This paper shows the experimental pressure distribution along the Coanda wall for different inlet.
Technical Paper

Multifunctional Unmanned Reconnaissance Aircraft for Low-Speed and STOL Operations

This paper presents a novel UAS (Unmanned Aerial System) designed for excellent low speed operations and VTOL performance. This aerial vehicle concept has been designed for maximizing the advantages by of the ACHEON (Aerial Coanda High Efficiency Orienting-jet Nozzle) propulsion system, which has been studied in a European commission under 7th framework programme. This UAS concept has been named MURALS (acronym of Multifunctional Unmanned Reconnaissance Aircraft for Low-speed and STOL operation). It has been studied as a joint activity of the members of the project as an evolution of a former concept, which has been developed during 80s and 90s by Aeritalia and Capuani. It has been adapted to host an ACHEON based propulsion system. In a first embodiment, the aircraft according to the invention has a not conventional shape with a single fuselage and its primary objective is to minimize the variation of the pitching moment allowing low speed operations.
Technical Paper

Preliminary Implementation Study of ACHEON Thrust and Vector Electrical Propulsion on a STOL Light Utility Aircraft

One of the best airplanes ever realized by the European Aircraft industry was the Dornier Do 28D Skyservant, an extraordinary STOL light utility aircraft with the capability to carry up to 13 passengers. It has been a simple and rugged aircraft capable also of operating under arduous conditions and very easy and simple maintenance. The architecture of this airplane, which has operated actively for more than 20 years, is very interesting analyzing the implementation of a new propulsion system because of the unusual incorporation of two engines, as well as the two main landing gear shock struts of the faired main landing gear attached to short pylons on either side of the forward fuselage. This unconventional design allows an easy implementation of different propulsion units, such as the history of different experimental versions allowed.
Technical Paper

MAAT Cruiser/Feeder Airship: Connection and Passenger Exchange Modes

In the general framework of the EU FP7 MAAT project, a novel green air transport architecture is under development. The paper presents the possible architectures for the cabin connections and the transfer modalities for people, crew and freight, for to the European project MAAT. Different architectures have been evaluated setting out to cover the structural and propulsive needs and to enable the transport modes between the Cruiser and the Feeders. The different possibilities are discussed conceptually, by considering the advantages and disadvantages of the presented configurations. The bases for future detailed design and research are established, as through such conceptual study the main parameters are identified and found to affect the general design of both airships and their operability. The aim of this paper is to specify the necessary elements, which are necessary to perform the docking operation by taking into account the prescribed Feeder-Cruiser geometries.
Technical Paper

Increasing Aeronautic Electric Propulsion Performances by Cogeneration and Heat Recovery

Emissions from aviation have become a focus of increasing interest in recent years. The growth of civil aviation is faster than nearly all other economic sectors. Increased demand has led to a higher growth rate in fossil fuels consumption by the aviation sector. Despite more fuel-efficient and less polluting turbofan and turboprop engines, the growth of air travel contributes to increase pollution attributable to aviation. Aircraft are currently the only human-made in situ generators of emissions in the upper troposphere and in the stratosphere. The depletion of the stratosphere's ozone layer by CFCs and related chemicals has underscored the importance of anticipating other potential insults to the ozone layer. Different possible solutions have been advanced to reduce the environmental impact of aviation, such as electrification of ground operations, optimization of airline timetables and airspace usage, limitation of cruise altitude and increased use of turboprop aircrafts.
Journal Article

Numerical and Experimental Investigation of the Piezoelectric Flapping Wing Micro-Air-Vehicles Propulsion

The flapping flight is advantageous for its superior maneuverability and much more aerodynamically efficiency for the small size UAV when compared to the conventional steady-state aerodynamics solution. Especially, it is appropriate for the Micro-air-vehicle (MAV) propulsion system, where the flapping wings can generate the required thrust. This paper investigated such solution, based on the piezoelectric patches, which are attached to the flexible plates, in combination with an appropriate amplification mechanisms. The numerical and experimental flow analyses have been carried out for the piezoelectric flapping plate, in order to characterize the fluid structure interaction induced by the swinging movement of the oscillating plate.
Journal Article

Fire-safe Airship System Design

This paper presents the new Hydrogen Fire-safe Airship system that overcomes the limitations present in previous airships designs of that kind, when considering their functioning at advanced operative position. Hydrogen is considered to be more effective than helium because of its low-cost production by hydrolysis, which process is nicely driven only by the photovoltaic energy. This paper presents a novel architectural concept of the buoyant balloon designed to increase the fire related safety, when applying hydrogen as the buoyant gas. The proposed buoyant volume is designed as a multi-balloon structure with a naturally ventilated shape, to ensure that hydrogen cannot reach the dangerous concentration level in the central airship balloon. This concept is expected to be the start of a novel hydrogen airship type, to be much safer than preceding ones.
Journal Article

Structural Analysis of an Engine Chassis for a Disc-Shaped Airship with Thrust Vector Control

This paper presents a structural analysis of an engine chassis for a disc-shaped airship demonstrator. The objective was to verify such design solutions for application in the European Union's MAAT (Multibody Advanced Airship for Transport) project. In many airship designs, the engines are attached to the airship frame, located inside the balloon, in order to allow for thrust vector control. These airships have aerodynamic control surfaces to improve maneuverability. For the demonstrator, three engines are considered, with a non-rigid internal structure for their attachment. The engines are located on a horizontal plane (the symmetry plane of the balloon), with two lateral engines and one in front of the balloon. The chassis installation allows the engines to be attached either directly to the exterior envelope by using Kevlar connections, or to the central structural pipe. This chassis design has a simple construction, compared to typical structures addressed in the literature.
Journal Article

Propulsion of Photovoltaic Cruiser-Feeder Airships Dimensioning by Constructal Design for Efficiency Method

The European project MAAT (Multi-body Advanced Airship for Transport) is producing the design of a transportation system for transport of people and goods, based on the cruiser feeder concept. This project defined novel airship concepts capable of handling safer than in the past hydrogen as a buoyant gas. In particular, it has explored novel variable shape airship concepts, which presents also intrinsic energetic advantages. It has recently conduced to the definition of an innovative design method based on the constructal principle, which applies to large transport vehicles and allows performing an effective energetic optimization and an effective optimization for the specific mission.