Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Investigation of Plasma Exhaust Profile Manipulation Using Magnetic Fields

In this research, the magnetoplasmadynamic (MPD) effects of applying a toroidal magnetic field around an ionized exhaust plume were investigated to manipulate the exhaust profile of the plasma jet under near vacuum conditions. Tests for this experiment were conducted using the West Virginia University (WVU) Hypersonic Arc Jet Wind Tunnel. A series of twelve N52 grade neodymium magnets were placed in different orientations around a steel toroid mounted around the arc jet’s exhaust plume. Four different magnet orientations were tested in this experiment. Two additional configurations were run as control tests without any imposed magnetic fields surrounding the plume. Each test was documented using a set of 12 photographs taken from a fixed position with respect to the flow. The photographic data was analyzed by comparing images of the exhaust plume taken 10, 20, and 30 seconds after the plasma jet was activated.
Technical Paper

Experimental Study of Dielectric Barrier Discharge Driven Duct Flow for Propulsion Applications in Unmanned Aerial Systems

The dielectric barrier discharge (DBD) has been studied significantly in the past two decades for its applications to various aerodynamic problems. The most common aerodynamic applications have been stall/separation control and boundary layer modification. Recently several researchers have proposed utilizing the DBD in various configurations to act as viable propulsion systems for micro and nano aerial vehicles. The DBD produces stable atmospheric-pressure non-thermal plasma in a thin sheet with a preferred direction of flow. The plasma flow, driven by electrohydrodynamic body forces, entrains the quiescent air around it and thus develops into a low speed jet on the order of 10-1 to 101 m/s. Several researchers have utilized DBDs in an annular geometric setup as a propulsion device. Other researchers have used them to alter rectangular duct flows and directional jet devices. This study investigates 2-D duct flows for applications in micro plasma thrusters.