Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Nearfield Analysis of Low Speed Flow over a Dielectric Barrier Discharge Device for Enhancement of Small UAV Aerodynamics

2018-10-30
2018-01-1953
As unmanned aerial vehicle applications continue their rise in popularity in the public and private sectors, there is an increasing demand in many cases for smaller, more efficient low speed unmanned aerial vehicles (UAVs). Although the primary drivers for the continued performance improvement of smaller UAV platforms tend to be in the areas of electronics miniaturization and improved energy storage, aerodynamics, particularly in the low Reynolds number regime, still have a significant role in the overall performance enhancement of small UAVs. This paper focuses on the study of the nearfield aerodynamic effects of a low-power active flow enhancement technique known as dielectric barrier discharge (DBD) in very low speed/low Reynolds number flows most closely associated with small and micro unmanned aerial vehicles.
Technical Paper

Some Developments in DES Modeling for Engine Flow Simulation

2015-09-06
2015-24-2414
Scale-resolving turbulence modeling for engine flow simulation has constantly increased its popularity in the last decade. In contrast to classical RANS modeling, LES-like approaches are able to resolve a larger number of unsteady flow features. In principle, this capability allows to accurately predict some of the key parameters involved in the development and optimization of modern engines such as cycle-to-cycle variations in a DI engine. However, since multiple simulated engine cycles are required to extract reliable flow statistics, the spatial and temporal resolution requirements of pure LES still represent a severe limit for its wider application on realistic engine geometries. In this context, Hybrid URANS-LES methodologies can therefore become a potentially attractive option. In fact, their task is to preserve the turbulence scale-resolving in the flow core regions but at a significantly lower computational cost compared to standard LES.
Technical Paper

Recommendation of Experimental Setup and use of Standardized Electrohydrodynamic Dimensionless Parameters for Optimization of a Dielectric Barrier Discharge Flow Control Device

2014-09-16
2014-01-2101
The high demand for traditional air traffic as well as increased use of unmanned aerial systems (UAS) has resulted in researchers examining alternative technologies which would result in safer, more reliable, and better performing aircraft. Active methods of aerodynamic flow control may be the most promising approach to this problem. Research in the area of aerodynamic control is transitioning from traditional mechanical flow control devices to, among other methods, plasma actuators. Plasma actuators offer an inexpensive and energy efficient method of flow control. Dielectric Barrier Discharge (DBD), one of the most widely studied forms of plasma actuation, employs an electrohydrodynamic (EHD) device which uses dominant electric fields for actuation. Unlike traditional flow control methods, a DBD device operates without moving components or mass injection methods.
Technical Paper

Hybrid Projectile Transformation Condition Detection System for Extended Selectable Range

2013-09-17
2013-01-2203
A Hybrid Projectile (HP) is a tube launched munition that transforms into a gliding UAV, and is currently being researched at West Virginia University. In order to properly transform, the moment of transformation needs to be controlled. A simple timer was first envisioned to control transformation point for maximum distance. The distance travelled or range of an HP can directly be modified by varying the launch angle. In addition, an internal timer would need to be reprogrammed for any distance less than maximum range due to the nominal time to deployment varying with launch angle. A method was sought for automatic wing deployment that would not require reprogramming the round. A body angle estimation system was used to estimate the pitch of the HP relative to the Earth to determine when the HP is properly oriented for the designed glide slope angle. It also filters out noise from an inertial measurement unit (IMU).
Technical Paper

Choice of Tuning Parameters on 3D IC Engine Simulations Using G-Equation

2018-04-03
2018-01-0183
3D CFD spark-ignition IC engine simulations are extremely complex for the regular user. Truly-predictive CFD simulations for the turbulent flame combustion that solve fully coupled transport/chemistry equations may require large computational capabilities unavailable to regular CFD users. A solution is to use a simpler phenomenological model such as the G-equation that decouples transport/chemistry result. Such simulation can still provide acceptable and faster results at the expense of predictive capabilities. While the G-equation is well understood within the experienced modeling community, the goal of this paper is to document some of them for a novice or less experienced CFD user who may not be aware that phenomenological models of turbulent flame combustion usually require heavy tuning and calibration from the user to mimic experimental observations.
Technical Paper

Direct Numerical Simulation of Methane Turbulent Premixed Oxy-Fuel Combustion

2017-10-08
2017-01-2192
A 3-D DNS (Three-Dimensional Direct Numerical Simulation) study with detailed chemical kinetic mechanism of methane has been performed to investigate the characteristics of turbulent premixed oxy-fuel combustion in the condition relevant to Spark Ignition (SI) engines. First, 1-D (one-dimensional) laminar freely propagating premixed flame is examined to show a consistent combustion temperature for different dilution cases, such that 73% H2O and 66% CO2 dilution ratios are adopted in the following 3-D DNS cases. Four 3-D DNS cases with various turbulence intensities are conducted. It is found that dilution agents can reduce the overall flame temperature but with an enhancement of density weighted flame speed. CO2 dilution case shows the lowest flame speed both in turbulent and laminar cases.
Technical Paper

Experimental Study of Dielectric Barrier Discharge Driven Duct Flow for Propulsion Applications in Unmanned Aerial Systems

2017-09-19
2017-01-2063
The dielectric barrier discharge (DBD) has been studied significantly in the past two decades for its applications to various aerodynamic problems. The most common aerodynamic applications have been stall/separation control and boundary layer modification. Recently several researchers have proposed utilizing the DBD in various configurations to act as viable propulsion systems for micro and nano aerial vehicles. The DBD produces stable atmospheric-pressure non-thermal plasma in a thin sheet with a preferred direction of flow. The plasma flow, driven by electrohydrodynamic body forces, entrains the quiescent air around it and thus develops into a low speed jet on the order of 10-1 to 101 m/s. Several researchers have utilized DBDs in an annular geometric setup as a propulsion device. Other researchers have used them to alter rectangular duct flows and directional jet devices. This study investigates 2-D duct flows for applications in micro plasma thrusters.
Technical Paper

Aerodynamic Drag Reduction of a Racing Motorcycle Through Vortex Generation

2003-09-16
2003-32-0037
For any high performance vehicle the aerodynamic properties are significant when attempting to optimize performance. For ground vehicles the major aerodynamic forces are drag and down-force. The focus of this research was to determine the feasibility of vortex generation as a method to reduce the aerodynamic drag of a racing class motorcycle. Wind tunnel tests were performed on a full-scale racing motorcycle in the Closed Loop Tunnel (CLT) at West Virginia University (WVU) and in Old Dominion University's (ODU) Langley Full Scale Tunnel (LFST) at various airspeeds. Counter-rotating vortices were generated using small commercially available vortex generators (VGs). The largest reduction in drag was 10%, which was measured in the WVU CLT. The LFST tests showed no measurable increase or decrease in drag. This led to the conclusion that the airspeed and test section blockage ratio influenced the optimum configuration and size of the vortex generators.
Journal Article

A De-Spin and Wings-Leveling Controller for a 40 mm Hybrid Projectile

2013-09-17
2013-01-2262
A Hybrid Projectile (HP) is a round that transforms into a UAV after being launched. Some HP's are fired from a rifled barrel and must be de-spun and wings-level for lifting surfaces to be deployed. Control surfaces and controllers for de-spinning and wings-leveling were required for initial design of an HP 40 mm. Wings, used as lifting surfaces after transformation, need to be very close to level with the ground when deployed. First, the tail surface area needed to de-spin a 40 mm HP was examined analytically and simulated. Next, a controller was developed to maintain a steady de-spin rate and to roll-level the projectile in preparation of wing deployment. The controller was split into two pieces, one to control de-spin, and the other for roll-leveling the projectile. An adaptable transition point for switching controllers was identified analytically and then adjusted by using simulations.
Journal Article

Preliminary Systems Evaluation for a Guidable Extended Range Tube Launched-UAV

2011-10-18
2011-01-2559
Tube Launched-Unmanned Air Vehicles (TL-UAV) are munitions that alter their trajectories during flight to enhance the capabilities by possibly extending range, increasing loiter time through gliding, and/or having guided targeting capabilities. Traditional munition systems, specifically the tube-launched mortar rounds, are not guided. Performance of these "dumb" munitions could be enhanced by updating to TL-UAV and still utilize existing launch platforms with standard propellant detonation firing methods. The ability to actively control the flight path and extend range of a TL-UAV requires multiple onboard systems which need to be identified, integrated, assembled, and tested to meet cooperative function requirements. The main systems, for a mortar-based TL-UAV being developed at West Virginia University (WVU), are considered to be a central hub to process information, aerodynamic control devices, flight sensors, a video camera system, power management, and a wireless transceiver.
Technical Paper

Heavy-duty aerodynamic testing for CO2 certification: A methodology comparison

2019-04-02
2019-01-0649
Air drag testing is a key component of the CO2 certification schemes for heavy-duty vehicles around the world. This paper presents and compares the regulatory approaches for measuring the air drag coefficient of heavy-duty vehicles in Europe, which uses a constant-speed test, and in the United States and Canada, which use a coastdown test. Two European trucks and one North American truck were tested using the constant-speed and coastdown methods. When corrected to zero yaw angle, a difference of over 10% was observed in the measured drag coefficients from the US coastdown procedure and the EU constant-speed test. The differences in the measured air drag coefficient can be attributed to the data post-processing required by each methodology, the assumptions in the speed-dependence of the tire rolling resistance, unaccounted frictional losses in the differential axle and transmission, as well as the behavior of the automated manual transmission during the coastdown run.
X