Refine Your Search

Topic

Author

Search Results

Journal Article

Investigation of Small Scale Pulsed Detonation Engines and Feasibility Study for Implementation with Disposable Unmanned Aerial Systems

2013-09-17
2013-01-2304
Significant efforts have been made in the research of Pulsed Detonation Engines (PDEs) to increase the reliability and longevity of detonation based propulsion systems for use in manned aircraft. However, the efficiency, durability, and low mechanical complexity of PDEs opens up potential for use in disposable unmanned-vehicles. This paper details the steps taken for producing a miniaturized pulse detonation engine at West Virginia University (WVU) to investigate the numerically generated constraining dimensions for Deflagration to Detonation Transition (DDT) cited in this paper. Initial dimensions for the WVU PDE Demonstrator were calculated using fuel specific DDT spatial properties featured in the work of Dr. Phillip Koshy Panicker, of The University of Texas at Arlington. The WVU demonstrator was powered using oxygen and acetylene mixed in stoichiometric proportions.
Technical Paper

Characterization of Cycle-by-Cycle Variations of an Optically Accessible Heavy-Duty Diesel Engine Retrofitted to Natural Gas Spark Ignition

2021-09-05
2021-24-0045
The combustion process in spark-ignition engines can vary considerably cycle by cycle, which may result in unstable engine operation. The phenomena amplify in natural gas (NG) spark-ignition (SI) engines due to the lower NG laminar flame speed compared to gasoline, and more so under lean burn conditions. The main goal of this study was to investigate the main sources and the characteristics of the cycle-by-cycle variation in heavy-duty compression ignition (CI) engines converted to NG SI operation. The experiments were conducted in a single-cylinder optically-accessible CI engine with a flat bowl-in piston that was converted to NG SI. The engine was operated at medium load under lean operating conditions, using pure methane as a natural gas surrogate. The CI to SI conversion was made through the addition of a low-pressure NG injector in the intake manifold and of a NG spark plug in place of the diesel injector.
Journal Article

Emissions Characterization from Different Technology Heavy-Duty Engines Retrofitted for CNG/Diesel Dual-Fuel Operation

2015-04-14
2015-01-1085
This study was aimed at experimentally investigating the impact of diesel/natural gas (NG) dual-fuel retrofitting onto gaseous emissions emitted by i) legacy, model year (MY) 2005 heavy-duty engines with cooled EGR and no after-treatment system, and ii) a latest technology engine equipped with DPF and urea-SCR after-treatment systems that is compliant with 2010 US-EPA emissions standards. In particular, two different dual-fuel conversion kits were evaluated in this study with pure methane (CH4) being used as surrogate for natural gas. Experiments were conducted on an engine dynamometer over a 13-mode steady-state test cycle as well as the transient FTP required for engine certification while gaseous emissions were sampled through a CVS system. Tailpipe NOx emissions were observed at a comparable level for diesel and diesel/CH4 dual-fuel operation for the 2010 compliant engine downstream the SCR.
Journal Article

Development of an Ammonia Reduction Aftertreatment Systems for Stoichiometric Natural Gas Engines

2017-01-10
2017-26-0143
Three-way catalyst equipped stoichiometric natural gas vehicles have proven to be an effective alternative fuel strategy that has shown superior low NOx benefits in comparison to diesels equipped with SCR. However, recent studies have shown the TWC activity to contribute to high levels of tailpipe ammonia emissions. Although a non-regulated pollutant, ammonia is a potent pre-cursor to ambient secondary PM formation. Ammonia (NH3) is an inevitable catalytic byproduct of TWCduring that results also corresponds to lowest NOx emissions. The main objective of the study is to develop a passive SCR based NH3 reduction strategy that results in an overall reduction of NH3 as well as NOx emissions from a stoichiometric spark ignited natural gas engine. The study investigated the characteristics of Fe-based and Cu-based zeolite SCR catalysts in storage, and desorption of ammonia at high exhaust temperature conditions, that are typical of stoichiometric natural gas engines.
Technical Paper

Energy Release Characteristics inside a Spark-Ignition Engine with a Bowl-in-Piston Geometry

2020-01-16
2020-01-5003
The conversion of compression ignition (CI) internal combustion engines to spark-ignition (SI) operation by adding a spark plug to ignite the mixture and fumigating the fuel inside the intake manifold can increase the use of alternative gaseous fuels (e.g., natural gas) in heavy-duty applications. This study proposed a novel, less-complex methodology based on the inflection points in the apparent rate of heat release (ROHR) that can identify and separate the fast-burning stage inside the piston bowl from the slower combustion stage inside the squish region (a characteristic of premixed combustion inside a diesel geometry). A single-cylinder 2L CI research engine converted to natural gas SI operation provided the experimental data needed to evaluate the methodology, at several spark timings, equivalence ratios, and engine speeds.
Journal Article

Summary of In-use NOx Emissions from Heavy-Duty Diesel Engines

2008-04-14
2008-01-1298
As part of the 1998 Consent Decrees concerning alternative ignition strategies between the six settling heavy-duty diesel engine manufacturers and the United States government, the engine manufacturers agreed to perform in-use emissions measurements of their engines. As part of the Consent Decrees, pre- (Phase III, pre-2000 engines) and post- (Phase IV, 2001 to 2003 engines) Consent Decree engines used in over-the-road vehicles were tested to examine the emissions of oxides of nitrogen (NOx) and carbon dioxide (CO2). A summary of the emissions of NOx and CO2 and fuel consumption from the Phase III and Phase IV engines are presented for 30 second “Not-to-Exceed” (NTE) window brake-specific values. There were approximately 700 Phase III tests and 850 Phase IV tests evaluated in this study, incorporating over 170 different heavy duty diesel engines spanning 1994 to 2003 model years. Test vehicles were operated over city, suburban, and highway routes.
Journal Article

The Influence of Accelerator Pedal Position Control during Transient Laboratory Testing on Heavy Duty Diesel Engines

2009-04-20
2009-01-0619
Pollutants are a major issue of diesel engines, with oxides of nitrogen (NOx) and airborne total particulate matter (TPM) of primary concern. Current emission standards rely on laboratory testing using an engine dynamometer with a standard test procedure. Results are reported as an integrated value for emissions from a transient set of engine speed and load conditions over a length of time or a set of prescribed speed-load points. To be considered a valid test by the US EPA, the measured engine speed and load are compared to the prescribed engine speed and load and must be within prescribed regression limits.
Journal Article

Preliminary Systems Evaluation for a Guidable Extended Range Tube Launched-UAV

2011-10-18
2011-01-2559
Tube Launched-Unmanned Air Vehicles (TL-UAV) are munitions that alter their trajectories during flight to enhance the capabilities by possibly extending range, increasing loiter time through gliding, and/or having guided targeting capabilities. Traditional munition systems, specifically the tube-launched mortar rounds, are not guided. Performance of these "dumb" munitions could be enhanced by updating to TL-UAV and still utilize existing launch platforms with standard propellant detonation firing methods. The ability to actively control the flight path and extend range of a TL-UAV requires multiple onboard systems which need to be identified, integrated, assembled, and tested to meet cooperative function requirements. The main systems, for a mortar-based TL-UAV being developed at West Virginia University (WVU), are considered to be a central hub to process information, aerodynamic control devices, flight sensors, a video camera system, power management, and a wireless transceiver.
Journal Article

Diesel Exhaust Aftertreatment with Scrubber Process: NOx Destruction

2012-05-15
2011-01-2440
Oxides of nitrogen (NOx) emissions, produced by engines that burn fuels with atmospheric air, are known to cause negative health and environmental effects. Increasingly stringent emissions regulations for marine engines have caused newer engines to be developed with inherent NOx reduction technologies. Older marine engines typically have a useful life of over 20 years and produce a disproportionate amount of NOx emissions when compared with their newer counterparts. Wet scrubbing as an aftertreatment method for emissions reduction was applied to ocean-going marine vessels for the reduction of sulfur oxides (SOx) and particulate matter (PM) emissions. The gaseous absorption process was explored in the laboratory as an option for reducing NOx emissions from older diesel engines of harbor craft operating in ports of Houston and Galveston. A scrubber system was designed, constructed, and evaluated to provide the basis for a real-world design.
Technical Paper

A Parametric Study of Knock Control Strategies for a Bi-Fuel Engine

1998-02-23
980895
Until a proper fueling infrastructure is established, vehicles powered by natural gas must have bi-fuel capability in order to avoid a limited vehicle range. Although bi-fuel conversions of existing gasoline engines have existed for a number of years, these engines do not fully exploit the combustion and knock properties of both fuels. Much of the power loss resulting from operation of an existing gasoline engine on compressed natural gas (CNG) can be recovered by increasing the compression ratio, thereby exploiting the high knock resistance of natural gas. However, gasoline operation at elevated compression ratios results in severe engine knock. The use of variable intake valve timing in conjunction with ignition timing modulation and electronically controlled exhaust gas recirculation (EGR) was investigated as a means of controlling knock when operating a bi-fuel engine on gasoline at elevated compression ratios.
Technical Paper

Alternative Fuel Truck Evaluation Project - Design and Preliminary Results

1998-05-04
981392
The objective of this project, which is supported by the U.S. Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL), is to provide a comprehensive comparison of heavy-duty trucks operating on alternative fuels and diesel fuel. Data collection from up to eight sites is planned. This paper summarizes the design of the project and early results from the first two sites. Data collection is planned for operations, maintenance, truck system descriptions, emissions, duty cycle, safety incidents, and capital costs and operating costs associated with the use of alternative fuels in trucking.
Technical Paper

Laser Spark Plug Development

2007-04-16
2007-01-1600
To meet the ignition system needs of large bore high pressure lean burn natural gas engines a laser diode side pumped passively Q-switched laser igniter was designed and tested. The laser was designed to produce the optical intensities needed to initiate ignition in a lean burn high brake mean effective pressure (BMEP) engine. The experimentation explored a variety of optical and electrical input parameters that when combined produced a robust spark in air. The results show peak power levels exceeding 2 MW and peak focal intensities above 400 GW/cm2. Future research avenues and current progress with the initial prototype are presented and discussed.
Technical Paper

Heat Release and Emission Characteristics of B20 Biodiesel Fuels During Steady State and Transient Operation

2008-04-14
2008-01-1377
Biodiesel fuels benefit both from being a renewable energy source and from decreasing in carbon monoxide (CO), total hydrocarbons (THC), and particulate matter (PM) emissions relative to petroleum diesel. The oxides of nitrogen (NOx) emissions from biodiesel blended fuels reported in the literature vary relative to baseline diesel NOx, with no NOx change or a NOx decrease found by some to an increase in NOx found by others. To explore differences in NOx, two Cummins ISM engines (1999 and 2004) were operated on 20% biodiesel blends during the heavy-duty transient FTP cycle and the steady state Supplemental Emissions Test. For the 2004 Cummins ISM engine, in-cylinder pressure data were collected during the steady state and transient tests. Three types of biodiesel fuels were used in the blends: soy, tallow (animal fat), and cottonseed. The FTP integrated emissions of the B20 blends produced a 20-35% reduction in PM and no change or up to a 4.3% increase in NOx over the neat diesel.
Technical Paper

Numerical Prediction of Knock in a Bi-Fuel Engine

1998-10-19
982533
Dedicated natural gas engines suffer the disadvantages of limited vehicle range and relatively few refueling stations. A vehicle capable of operating on either gasoline or natural gas allows alternative fuel usage without sacrificing vehicle range and mobility. However, the bi-fuel engine must be made to provide equal performance on both fuels. Although bi-fuel conversions have existed for a number of years, historically natural gas performance is degraded relative to gasoline due to reduced volumetric efficiency and lower power density of CNG. Much of the performance losses associated with CNG can be overcome by increasing the compression ratio. However, in a bi-fuel application, high compression ratios can result in severe engine knock during gasoline operation. Variable intake valve timing, increased exhaust gas recirculation and retarded ignition timing were explored as a means of controlling knock during gasoline operation of a bi-fuel engine.
Technical Paper

A Long Term Field Emissions Study of Natural Gas Fueled Refuse Haulers in New York City

1998-10-19
982456
New York City Department of Sanitation has operated natural gas fueled refuse haulers in a pilot study: a major goal of this study was to compare the emissions from these natural gas vehicles with their diesel counterparts. The vehicles were tandem axle trucks with GVW (gross vehicle weight) rating of 69,897 pounds. The primary use of these vehicles was for street collection and transporting the collected refuse to a landfill. West Virginia University Transportable Heavy Duty Emissions Testing Laboratories have been engaged in monitoring the tailpipe emissions from these trucks for seven-years. In the later years of testing the hydrocarbons were speciated for non-methane and methane components. Six of these vehicles employed the older technology (mechanical mixer) Cummins L-10 lean burn natural gas engines.
Technical Paper

and Repeatability of Transient Heat Release Analysis for Heavy Duty Diesel Engines

2009-04-20
2009-01-1125
Reduced emissions, improved fuel economy, and improved performance are a priority for manufacturers of internal combustion engines. However, these three goals are normally interrelated and difficult to optimize simultaneously. Studying the experimental heat release provides a useful tool for combustion optimization. Heavy-duty diesel engines are inherently transient, even during steady state operation engine controls can vary due to exhaust gas recirculation (EGR) or aftertreatment requirements. This paper examines the heat release and the derived combustion characteristics during steady state and transient operation for a 1992 DDC series 60 engine and a 2004 Cummins ISM 370 engine. In-cylinder pressure was collected during repeat steady state SET and the heavy-duty transient FTP test cycles.
Technical Paper

Emissions of NOx, NH3 and Fuel Consumption Using High and Low Engine-Out NOx Calibrations to Meet 2010 Heavy Duty Diesel Engine Emission Standards

2009-04-20
2009-01-0909
For engine operations involving low load conditions for an extended amount of time, the exhaust temperature may be lower than that necessary to initiate the urea hydrolyzation. This would necessitate that the controller interrupt the urea supply to prevent catalyst fouling by products of ammonia decomposition. Therefore, it is necessary for the engine controller to have multiple calibrations available in regions of engine operation where the aftertreatment does not perform well, so that optimal exhaust conditions are guaranteed during the wide variety of engine operations. In this study the test engine was equipped with a catalyzed diesel particulate filter (DPF) and a selective catalytic reduction system (SCR), and programmed with two different engine calibrations, namely the low-NOx and the low fuel consumption (low-FC).
Technical Paper

Application of Two Fuel Cells in Hybrid Electric Vehicles

2008-10-06
2008-01-2418
Fuel economy is an important issue in urban driving cycle where vehicles are required to operate most of the time at lower power than the average demand. High power fuel cells operate economically at higher loads. Hence, conventional combination of a high power fuel cell and an additional storage device such as ultracapacitor or battery units does not necessarily provide an economic configuration. This paper offers a new configuration that consists of two fuel cells combined with a battery unit to provide a fuel efficient source of power for hybrid electric fuel cell vehicles in urban driving applications. The control algorithm and power management strategy for a combination of two downsized fuel cells and a storage device is provided and its performance of operation is compared with traditional topologies.
Technical Paper

Chassis Dynamometer Emission Measurements from Refuse Trucks Using Dual-Fuel™ Natural Gas Engines

2003-11-10
2003-01-3366
Emissions from 10 refuse trucks equipped with Caterpillar C-10 engines were measured on West Virginia University's (WVU) Transportable Emissions Laboratory in Riverside, California. The engines all used a commercially available Dual-Fuel™ natural gas (DFNG) system supplied by Clean Air Partners Inc. (CAP), and some were also equipped with catalyzed particulate filters (CPFs), also from CAP. The DFNG system introduces natural gas with the intake air and then ignites the gas with a small injection of diesel fuel directly into the cylinder to initiate combustion. Emissions were measured over a modified version of a test cycle (the William H. Martin cycle) previously developed by WVU. The cycle attempts to duplicate a typical curbside refuse collection truck and includes three modes: highway-to-landfill delivery, curbside collection, and compaction. Emissions were compared to similar trucks that used Caterpillar C-10 diesels equipped with Engelhard's DPX catalyzed particulate filters.
Technical Paper

Laser-Spark Ignition Testing in a Natural Gas-Fueled Single-Cylinder Engine

2004-03-08
2004-01-0980
As the demand for higher engine efficiencies and lower emissions drive stationary, spark-ignited reciprocating engine combustion to leaner air/fuel operating conditions and higher in-cylinder pressures, increased spark energy is required for maintain stable combustion and low emissions. Unfortunately, increased spark energy negatively impacts spark plug durability and its effectiveness in transmitting adequate energy as an ignition source. Laser ignition offers the potential to improve ignition system durability, reduce maintenance, as well as to improve engine combustion performance. This paper discusses recent engine combustion testing with an open beam path laser ignition system in a single-cylinder engine fueled by natural gas. In particular, engine knock and misfire maps are developed for both conventional spark plug and laser spark ignition. The misfire limit is shown to be significantly extended for laser ignition while the knock limit remains virtually unaffected.
X