Refine Your Search


Search Results

Technical Paper

Development and Testing of a Second Generation ULEV Series HEV at West Virginia University

As a part of the 1996 FutureCar Challenge competition, West Virginia University converted a 1996 Chevrolet Lumina to a series hybrid electric vehicle. This technical report summarizes the modifications made to the vehicle during 1997, the second year of the competition, and details the present state of development of this second-generation hybrid electric vehicle. In particular, the vehicle's powertrain configuration, component selection, control strategy for all modes of operation, emissions control strategies, vehicle structure and design modifications, and suspension design and modifications are all detailed. Also discussed, are the operational use of this vehicle and its intended market. The projected performance of the vehicle, obtained from computer simulations, is discussed in the light of results obtained from testing during 1996 and 1997.
Technical Paper

System Level RBDO for Military Ground Vehicles using High Performance Computing

The Army continues to improve its Reliability-based Design Optimization (RBDO) process, expanding from component optimization to system optimization. We are using the massively parallel computing power of the Department of Defense (DoD) High Performance Computing (HPC) systems to simultaneously optimize multiple components which interact with each other in a mechanical system. Specifically, we have a subsystem of a military ground vehicle, consisting of more than four components and are simultaneously optimizing five components of that subsystem using RBDO methods. We do not simply optimize one component at a time, sequentially, and iterate until convergence. We actually simultaneously optimize all components together. This can be done efficiently using the parallel computing environment. We will discuss the results of this optimization, and the advantages and disadvantages of using HPC systems for this work.
Technical Paper

Regenerative Braking of a 2015 LMP1-H Racing Car

Regenerative braking coupled to small high power density engines are becoming more and more popular in motorsport applications delivering improved performances while increasing similarities and synergies in between road and track applications. Computer aided engineering (CAE) tools integrated with the telemetry data of the car are an important component of the product development. This paper presents the CAE model developed to describe the race track operation of a LMP1-H racing car covering one lap of the Le Mans circuit. The friction and regenerative braking is discussed.
Technical Paper

Investigation of Dynamic Roughness Flow Control on NACA 0012 Airfoil at Low Reynolds Number

There is an ever growing need in the aircraft industry to increase the performance of a flight vehicle. To enhance performance of the flight vehicle one active area of research effort has been focused on the control of the boundary layer by both active and passive means. An effective flow control mechanism can improve the performance of a flight vehicle by eliminating boundary layer separation at the leading edge (as long as the energy required to drive the mechanism is not greater than the savings). In this paper the effectiveness of a novel active flow control technique known as dynamic roughness (DR) to eliminate flow separation in a stalled NACA 0012 wing has been explored. As opposed to static roughness, dynamic roughness utilizes small time-dependent deforming elements or humps with amplitudes that are on the order of the local boundary layer height to energize the local boundary layer. DR is primarily characterized by the maximum amplitude and operating frequency.
Technical Paper

Recommendation of Experimental Setup and use of Standardized Electrohydrodynamic Dimensionless Parameters for Optimization of a Dielectric Barrier Discharge Flow Control Device

The high demand for traditional air traffic as well as increased use of unmanned aerial systems (UAS) has resulted in researchers examining alternative technologies which would result in safer, more reliable, and better performing aircraft. Active methods of aerodynamic flow control may be the most promising approach to this problem. Research in the area of aerodynamic control is transitioning from traditional mechanical flow control devices to, among other methods, plasma actuators. Plasma actuators offer an inexpensive and energy efficient method of flow control. Dielectric Barrier Discharge (DBD), one of the most widely studied forms of plasma actuation, employs an electrohydrodynamic (EHD) device which uses dominant electric fields for actuation. Unlike traditional flow control methods, a DBD device operates without moving components or mass injection methods.
Technical Paper

Hybrid Projectile Transformation Condition Detection System for Extended Selectable Range

A Hybrid Projectile (HP) is a tube launched munition that transforms into a gliding UAV, and is currently being researched at West Virginia University. In order to properly transform, the moment of transformation needs to be controlled. A simple timer was first envisioned to control transformation point for maximum distance. The distance travelled or range of an HP can directly be modified by varying the launch angle. In addition, an internal timer would need to be reprogrammed for any distance less than maximum range due to the nominal time to deployment varying with launch angle. A method was sought for automatic wing deployment that would not require reprogramming the round. A body angle estimation system was used to estimate the pitch of the HP relative to the Earth to determine when the HP is properly oriented for the designed glide slope angle. It also filters out noise from an inertial measurement unit (IMU).
Technical Paper

Influence of Materials Properties on Process Planning Effectiveness

Process planning, whether generative or variant, can be used effectively as through the incorporation of computer aided tools that enhance the evaluator impact of the dialogue between the design and manufacturing functions. Expert systems and algorithms are inherently incorporated into the software tools used herein. This paper examines the materials related implications that influence design for manufacturing issues. Generative process planning software tools are utilized to analyze the sensitivity of the effectiveness of the process plans with respect to changing attributes of material properties. The shift that occurs with respect to cost and production rates of process plans with respect to variations in specific material properties are explored. The research will be analyzing the effect of changes in material properties with respect to the design of a specific product that is prismatic and is produced exclusively by machining processes.
Technical Paper

Investigation of Plasma Exhaust Profile Manipulation Using Magnetic Fields

In this research, the magnetoplasmadynamic (MPD) effects of applying a toroidal magnetic field around an ionized exhaust plume were investigated to manipulate the exhaust profile of the plasma jet under near vacuum conditions. Tests for this experiment were conducted using the West Virginia University (WVU) Hypersonic Arc Jet Wind Tunnel. A series of twelve N52 grade neodymium magnets were placed in different orientations around a steel toroid mounted around the arc jet’s exhaust plume. Four different magnet orientations were tested in this experiment. Two additional configurations were run as control tests without any imposed magnetic fields surrounding the plume. Each test was documented using a set of 12 photographs taken from a fixed position with respect to the flow. The photographic data was analyzed by comparing images of the exhaust plume taken 10, 20, and 30 seconds after the plasma jet was activated.
Technical Paper

Experimental Investigation into the Degradation of Borosilicate Glass Used in Dielectric Barrier Discharge Devices

The dielectric barrier discharge (DBD) has seen significantly increased levels of interest for its applications to various aerodynamic problems. The DBD produces stable atmospheric-pressure non-thermal plasma with highly energetic electrons and a variety of ions and neutral species. The resulting plasma often degrades the dielectric barrier between the electrodes of the device, ultimately leading to actuator failure. Several researchers have studied a variety of parameters related to degradation and time-dependent dielectric breakdown of various polymers such as PMMA or PVC that are often used in actuator construction. Many of these studies compare the degradation of these materials to that of borosilicate glass in which it is claimed that there is no observable degradation to the glass. Recent research at West Virginia University has shown that certain actuator operating conditions can lead to degradation of a glass barrier and can ultimately result in failure.
Technical Paper

Quality Assurance of Exhaust Emissions Test Data Measured Using Portable Emissions Measurement System

Beginning 2007, heavy-duty engine certification would require that in-use emissions from vehicles be measured under ‘real-world’ operating conditions using on-board measurement devices. An on-board portable emissions measurement system called Mobile Emissions Measurement System (MEMS) was developed at West Virginia University (WVU) to record in-use, continuous and brake-specific emissions from heavy-duty diesel-powered vehicles. The objective of this paper is to present a preliminary development of a test data quality assurance methodology for emissions measured using the any portable emissions measurement system (PEMS). The first stage of the methodology requires ensuring the proper operation of the different sensors and transducers during data collection. The second stage is data synchronization and pre-processing. The next stage is systematic checking of possible errors from transducers and sensors.
Technical Paper

Thermo-Mechanical Modeling of Friction Stir Spot Welding (FSSW)

This paper presents on-going finite element modeling efforts of friction stir spot welding (FSSW) process using Abaqus/Explicit as a finite element solver. Three-dimensional coupled thermal-stress model was used to calculate thermo-mechanical response of FSSW process. Adaptive meshing and advection schemes, which makes it possible to maintain mesh quality under large deformations, is utilized to simulate the material flow and temperature distribution in FSSW process. The predicted overall deformation shape of the weld joint resembles that experimentally observed. Temperature and stress graphs in the radial direction as well as temperature-deformation distribution plots are presented.
Technical Paper

Aerodynamic Drag Reduction of a Racing Motorcycle Through Vortex Generation

For any high performance vehicle the aerodynamic properties are significant when attempting to optimize performance. For ground vehicles the major aerodynamic forces are drag and down-force. The focus of this research was to determine the feasibility of vortex generation as a method to reduce the aerodynamic drag of a racing class motorcycle. Wind tunnel tests were performed on a full-scale racing motorcycle in the Closed Loop Tunnel (CLT) at West Virginia University (WVU) and in Old Dominion University's (ODU) Langley Full Scale Tunnel (LFST) at various airspeeds. Counter-rotating vortices were generated using small commercially available vortex generators (VGs). The largest reduction in drag was 10%, which was measured in the WVU CLT. The LFST tests showed no measurable increase or decrease in drag. This led to the conclusion that the airspeed and test section blockage ratio influenced the optimum configuration and size of the vortex generators.
Technical Paper

Downwash Wake Reduction Investigation for Application on the V-22 “Osprey”

The downwash of the prop-rotor blades of the Bell/Boeing V-22 “Osprey” in hover mode creates an undesirable negative lift on the wing of the aircraft. This downforce can be reduced through a number of methods. Neglecting all other effects, such as power requirements, this research investigated the feasibility of using circulation control, through blowing slots on the leading and trailing edge of the airfoil to reduce the wake profile under the wing. A model was built at West Virginia University (WVU) and tested in a Closed Loop Wind Tunnel. The airfoil was placed normal to the airflow using the tunnel air to simulate the vertical component of the downwash experienced in hover mode. The standard hover mode flap angle of 67 degrees was used throughout the testing covered in this paper. All of these tests were conducted at a free stream velocity of 59 fps, and the baseline downforce on the model was measured to be 5.45 lbs.
Technical Paper

Rotary Engines – A Concept Review

The basic design of a purely rotary motion engine has potentially many advantages over the conventional piston-crank internal combustion engine. Although only one rotary engine has been successfully placed into production, rotary mechanisms still show promise in the market place. A comprehensive review of rotary engine concepts is presented with an emphasis placed on the last 30 years. Suggestions are made as to where research concentrations should be placed to improve the progress of a rotary engine.
Technical Paper

Design, Manufacturing, Testing, and Analysis of a Highly-Constrained Single-Use UAV Wing

Unmanned aerial vehicle (UAV) design aspects are as broad as the missions they are used to support. In some cases, the UAV mission scope can impose design constraints that can be difficult to achieve. This paper describes recent work performed at West Virginia University (WVU) to support repeated flight testing of a single-use UAV platform with emphasis on the highly specialized wings required to help meet the overall airframe mass properties constrained by the project sponsor. The wings were fabricated using a molded polyurethane (PU) foam as the base material which was supported by several different types of rigid and flexible substructures, skins, and matrix-infused fiber elements. Different ratios of infused fiber mass to PU foam were tested and additional tungsten masses were added to the wings to achieve the correct total mass and mass distribution of the wings.
Technical Paper

Cadaver Femur Responses to Longitudinal Impacts

Results from longitudinal impact tests on the knees of nine seated cadavers are reported. Typical impact velocities, impact force histories and femur strain histories are presented. The importance of femur bending is revealed by strain readings on the medial, lateral, anterior and posterior surfaces. The effects of impactor padding, leg tissue and oblique impacts are illustrated. The average fracture force level was found to be 10.04 kN and the impact energy to be 549J. The fracture patterns and possible mechanisms are discussed.
Technical Paper

Investigation of Femur Response to Longitudinal Impact

Longitudinal impact tests were conducted on the knees of four seated embalmed cadavers using an impact pendulum. Impact force and femur strain histories were recorded, and peak force at fracture was determined. The results show that femur stiffness (average = 3.29 MN) for impacts is nearly the same as for static loads. Peak fracture loads varied from 8731-11570 N, all above the fracture criterion proposed by King, Fan and Vargovick. Strain histories and fracture patterns suggest that bending effects play a major role in determining the response of embalmed cadaver femurs to longitudinal impact.
Journal Article

High Temperature Sampling System for Real Time Measurement of Solid and Volatile Fractions of Exhaust Particulate Matter

This paper discusses the design and qualification of a High Temperature Sampling System (HTSS), capable of stripping the volatile fraction from a sample flow stream in order to provide for quantification of total, solid and volatile particulate matter (PM) on a near real-time basis. The sampling system, which incorporates a heated diesel oxidation catalyst, is designed for temperatures up to 450°C. The design accounts for molecular diffusion of volatile compounds, solid particles diffusion and reaction kinetics inside one channel of the oxidation catalyst. An overall solid particle loss study in the sampling was performed, and numerical results were compared with experimental data gathered at the West Virginia University Engine and Emissions Research Laboratory (EERL) and West Virginia University's Transportable Heavy-Duty Vehicle Emissions Testing Laboratory (THDVETL).
Journal Article

A De-Spin and Wings-Leveling Controller for a 40 mm Hybrid Projectile

A Hybrid Projectile (HP) is a round that transforms into a UAV after being launched. Some HP's are fired from a rifled barrel and must be de-spun and wings-level for lifting surfaces to be deployed. Control surfaces and controllers for de-spinning and wings-leveling were required for initial design of an HP 40 mm. Wings, used as lifting surfaces after transformation, need to be very close to level with the ground when deployed. First, the tail surface area needed to de-spin a 40 mm HP was examined analytically and simulated. Next, a controller was developed to maintain a steady de-spin rate and to roll-level the projectile in preparation of wing deployment. The controller was split into two pieces, one to control de-spin, and the other for roll-leveling the projectile. An adaptable transition point for switching controllers was identified analytically and then adjusted by using simulations.
Journal Article

Investigation of Small Scale Pulsed Detonation Engines and Feasibility Study for Implementation with Disposable Unmanned Aerial Systems

Significant efforts have been made in the research of Pulsed Detonation Engines (PDEs) to increase the reliability and longevity of detonation based propulsion systems for use in manned aircraft. However, the efficiency, durability, and low mechanical complexity of PDEs opens up potential for use in disposable unmanned-vehicles. This paper details the steps taken for producing a miniaturized pulse detonation engine at West Virginia University (WVU) to investigate the numerically generated constraining dimensions for Deflagration to Detonation Transition (DDT) cited in this paper. Initial dimensions for the WVU PDE Demonstrator were calculated using fuel specific DDT spatial properties featured in the work of Dr. Phillip Koshy Panicker, of The University of Texas at Arlington. The WVU demonstrator was powered using oxygen and acetylene mixed in stoichiometric proportions.