Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Investigation of Dynamic Roughness Flow Control on NACA 0012 Airfoil at Low Reynolds Number

There is an ever growing need in the aircraft industry to increase the performance of a flight vehicle. To enhance performance of the flight vehicle one active area of research effort has been focused on the control of the boundary layer by both active and passive means. An effective flow control mechanism can improve the performance of a flight vehicle by eliminating boundary layer separation at the leading edge (as long as the energy required to drive the mechanism is not greater than the savings). In this paper the effectiveness of a novel active flow control technique known as dynamic roughness (DR) to eliminate flow separation in a stalled NACA 0012 wing has been explored. As opposed to static roughness, dynamic roughness utilizes small time-dependent deforming elements or humps with amplitudes that are on the order of the local boundary layer height to energize the local boundary layer. DR is primarily characterized by the maximum amplitude and operating frequency.
Technical Paper

Recommendation of Experimental Setup and use of Standardized Electrohydrodynamic Dimensionless Parameters for Optimization of a Dielectric Barrier Discharge Flow Control Device

The high demand for traditional air traffic as well as increased use of unmanned aerial systems (UAS) has resulted in researchers examining alternative technologies which would result in safer, more reliable, and better performing aircraft. Active methods of aerodynamic flow control may be the most promising approach to this problem. Research in the area of aerodynamic control is transitioning from traditional mechanical flow control devices to, among other methods, plasma actuators. Plasma actuators offer an inexpensive and energy efficient method of flow control. Dielectric Barrier Discharge (DBD), one of the most widely studied forms of plasma actuation, employs an electrohydrodynamic (EHD) device which uses dominant electric fields for actuation. Unlike traditional flow control methods, a DBD device operates without moving components or mass injection methods.
Technical Paper

Experimental Investigation into the Degradation of Borosilicate Glass Used in Dielectric Barrier Discharge Devices

The dielectric barrier discharge (DBD) has seen significantly increased levels of interest for its applications to various aerodynamic problems. The DBD produces stable atmospheric-pressure non-thermal plasma with highly energetic electrons and a variety of ions and neutral species. The resulting plasma often degrades the dielectric barrier between the electrodes of the device, ultimately leading to actuator failure. Several researchers have studied a variety of parameters related to degradation and time-dependent dielectric breakdown of various polymers such as PMMA or PVC that are often used in actuator construction. Many of these studies compare the degradation of these materials to that of borosilicate glass in which it is claimed that there is no observable degradation to the glass. Recent research at West Virginia University has shown that certain actuator operating conditions can lead to degradation of a glass barrier and can ultimately result in failure.
Technical Paper

Downwash Wake Reduction Investigation for Application on the V-22 “Osprey”

The downwash of the prop-rotor blades of the Bell/Boeing V-22 “Osprey” in hover mode creates an undesirable negative lift on the wing of the aircraft. This downforce can be reduced through a number of methods. Neglecting all other effects, such as power requirements, this research investigated the feasibility of using circulation control, through blowing slots on the leading and trailing edge of the airfoil to reduce the wake profile under the wing. A model was built at West Virginia University (WVU) and tested in a Closed Loop Wind Tunnel. The airfoil was placed normal to the airflow using the tunnel air to simulate the vertical component of the downwash experienced in hover mode. The standard hover mode flap angle of 67 degrees was used throughout the testing covered in this paper. All of these tests were conducted at a free stream velocity of 59 fps, and the baseline downforce on the model was measured to be 5.45 lbs.
Journal Article

High Temperature Sampling System for Real Time Measurement of Solid and Volatile Fractions of Exhaust Particulate Matter

This paper discusses the design and qualification of a High Temperature Sampling System (HTSS), capable of stripping the volatile fraction from a sample flow stream in order to provide for quantification of total, solid and volatile particulate matter (PM) on a near real-time basis. The sampling system, which incorporates a heated diesel oxidation catalyst, is designed for temperatures up to 450°C. The design accounts for molecular diffusion of volatile compounds, solid particles diffusion and reaction kinetics inside one channel of the oxidation catalyst. An overall solid particle loss study in the sampling was performed, and numerical results were compared with experimental data gathered at the West Virginia University Engine and Emissions Research Laboratory (EERL) and West Virginia University's Transportable Heavy-Duty Vehicle Emissions Testing Laboratory (THDVETL).
Journal Article

Investigation of Small Scale Pulsed Detonation Engines and Feasibility Study for Implementation with Disposable Unmanned Aerial Systems

Significant efforts have been made in the research of Pulsed Detonation Engines (PDEs) to increase the reliability and longevity of detonation based propulsion systems for use in manned aircraft. However, the efficiency, durability, and low mechanical complexity of PDEs opens up potential for use in disposable unmanned-vehicles. This paper details the steps taken for producing a miniaturized pulse detonation engine at West Virginia University (WVU) to investigate the numerically generated constraining dimensions for Deflagration to Detonation Transition (DDT) cited in this paper. Initial dimensions for the WVU PDE Demonstrator were calculated using fuel specific DDT spatial properties featured in the work of Dr. Phillip Koshy Panicker, of The University of Texas at Arlington. The WVU demonstrator was powered using oxygen and acetylene mixed in stoichiometric proportions.
Journal Article

Energy Conservation through Productivity Enhancement in Manufacturing Facilities

The goal of this research work is to explore the energy savings that may result from productivity improvement recommendations. The productivity improvement recommendations on setup time reduction and finished goods inventory reduction were taken from Industrial Assessment Center (IAC-WVU) and Industries of the Future (IOF-WVU) databases at West Virginia University (WVU) and analyzed to evaluate the corresponding energy savings. A simulation analysis was performed to compare the peak energy demands (kW) in the present and proposed scenarios for the setup time reduction recommendation. It was found that productivity improvement recommendations can result in significant energy savings (2% to 4%).