Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Knock Prediction in Reciprocating Gas-Engines Using Detailed Chemical Kinetics

2001-03-05
2001-01-1012
Two and three-dimensional test cases were simulated using a detailed kinetic mechanism for di-methyl ether to represent methane combustion. A piston-bowl assembly for the compression and expansion strokes with combustion has been simulated at 1500 RPM. A fine grid was used for the 2-D simulations and a rather coarse grid was used for the 3-D calculations together with a k-ε subgrid-scale turbulence model and a partially stirred reactor model with three time scales. Ignition was simulated artificially by increasing the temperature at one point inside the cylinder. The results of these simulations were compared with experimental results. The simulation involved an engine with a homogeneous charge of methane as fuel. Results indicate that pressure fluctuations were captured some time after the ignition started, which indicates knock conditions.
Technical Paper

Some Developments in DES Modeling for Engine Flow Simulation

2015-09-06
2015-24-2414
Scale-resolving turbulence modeling for engine flow simulation has constantly increased its popularity in the last decade. In contrast to classical RANS modeling, LES-like approaches are able to resolve a larger number of unsteady flow features. In principle, this capability allows to accurately predict some of the key parameters involved in the development and optimization of modern engines such as cycle-to-cycle variations in a DI engine. However, since multiple simulated engine cycles are required to extract reliable flow statistics, the spatial and temporal resolution requirements of pure LES still represent a severe limit for its wider application on realistic engine geometries. In this context, Hybrid URANS-LES methodologies can therefore become a potentially attractive option. In fact, their task is to preserve the turbulence scale-resolving in the flow core regions but at a significantly lower computational cost compared to standard LES.
Technical Paper

Investigation of Plasma Exhaust Profile Manipulation Using Magnetic Fields

2017-09-19
2017-01-2048
In this research, the magnetoplasmadynamic (MPD) effects of applying a toroidal magnetic field around an ionized exhaust plume were investigated to manipulate the exhaust profile of the plasma jet under near vacuum conditions. Tests for this experiment were conducted using the West Virginia University (WVU) Hypersonic Arc Jet Wind Tunnel. A series of twelve N52 grade neodymium magnets were placed in different orientations around a steel toroid mounted around the arc jet’s exhaust plume. Four different magnet orientations were tested in this experiment. Two additional configurations were run as control tests without any imposed magnetic fields surrounding the plume. Each test was documented using a set of 12 photographs taken from a fixed position with respect to the flow. The photographic data was analyzed by comparing images of the exhaust plume taken 10, 20, and 30 seconds after the plasma jet was activated.
Technical Paper

Aerodynamic Drag Reduction of a Racing Motorcycle Through Vortex Generation

2003-09-16
2003-32-0037
For any high performance vehicle the aerodynamic properties are significant when attempting to optimize performance. For ground vehicles the major aerodynamic forces are drag and down-force. The focus of this research was to determine the feasibility of vortex generation as a method to reduce the aerodynamic drag of a racing class motorcycle. Wind tunnel tests were performed on a full-scale racing motorcycle in the Closed Loop Tunnel (CLT) at West Virginia University (WVU) and in Old Dominion University's (ODU) Langley Full Scale Tunnel (LFST) at various airspeeds. Counter-rotating vortices were generated using small commercially available vortex generators (VGs). The largest reduction in drag was 10%, which was measured in the WVU CLT. The LFST tests showed no measurable increase or decrease in drag. This led to the conclusion that the airspeed and test section blockage ratio influenced the optimum configuration and size of the vortex generators.
Technical Paper

Downwash Wake Reduction Investigation for Application on the V-22 “Osprey”

2003-09-08
2003-01-3020
The downwash of the prop-rotor blades of the Bell/Boeing V-22 “Osprey” in hover mode creates an undesirable negative lift on the wing of the aircraft. This downforce can be reduced through a number of methods. Neglecting all other effects, such as power requirements, this research investigated the feasibility of using circulation control, through blowing slots on the leading and trailing edge of the airfoil to reduce the wake profile under the wing. A model was built at West Virginia University (WVU) and tested in a Closed Loop Wind Tunnel. The airfoil was placed normal to the airflow using the tunnel air to simulate the vertical component of the downwash experienced in hover mode. The standard hover mode flap angle of 67 degrees was used throughout the testing covered in this paper. All of these tests were conducted at a free stream velocity of 59 fps, and the baseline downforce on the model was measured to be 5.45 lbs.
X