Refine Your Search

Search Results

Viewing 1 to 8 of 8
Journal Article

A De-Spin and Wings-Leveling Controller for a 40 mm Hybrid Projectile

2013-09-17
2013-01-2262
A Hybrid Projectile (HP) is a round that transforms into a UAV after being launched. Some HP's are fired from a rifled barrel and must be de-spun and wings-level for lifting surfaces to be deployed. Control surfaces and controllers for de-spinning and wings-leveling were required for initial design of an HP 40 mm. Wings, used as lifting surfaces after transformation, need to be very close to level with the ground when deployed. First, the tail surface area needed to de-spin a 40 mm HP was examined analytically and simulated. Next, a controller was developed to maintain a steady de-spin rate and to roll-level the projectile in preparation of wing deployment. The controller was split into two pieces, one to control de-spin, and the other for roll-leveling the projectile. An adaptable transition point for switching controllers was identified analytically and then adjusted by using simulations.
Technical Paper

Hybrid Projectile Transformation Condition Detection System for Extended Selectable Range

2013-09-17
2013-01-2203
A Hybrid Projectile (HP) is a tube launched munition that transforms into a gliding UAV, and is currently being researched at West Virginia University. In order to properly transform, the moment of transformation needs to be controlled. A simple timer was first envisioned to control transformation point for maximum distance. The distance travelled or range of an HP can directly be modified by varying the launch angle. In addition, an internal timer would need to be reprogrammed for any distance less than maximum range due to the nominal time to deployment varying with launch angle. A method was sought for automatic wing deployment that would not require reprogramming the round. A body angle estimation system was used to estimate the pitch of the HP relative to the Earth to determine when the HP is properly oriented for the designed glide slope angle. It also filters out noise from an inertial measurement unit (IMU).
Technical Paper

Design, Manufacturing, Testing, and Analysis of a Highly-Constrained Single-Use UAV Wing

2018-10-30
2018-01-1958
Unmanned aerial vehicle (UAV) design aspects are as broad as the missions they are used to support. In some cases, the UAV mission scope can impose design constraints that can be difficult to achieve. This paper describes recent work performed at West Virginia University (WVU) to support repeated flight testing of a single-use UAV platform with emphasis on the highly specialized wings required to help meet the overall airframe mass properties constrained by the project sponsor. The wings were fabricated using a molded polyurethane (PU) foam as the base material which was supported by several different types of rigid and flexible substructures, skins, and matrix-infused fiber elements. Different ratios of infused fiber mass to PU foam were tested and additional tungsten masses were added to the wings to achieve the correct total mass and mass distribution of the wings.
Technical Paper

Nearfield Analysis of Low Speed Flow over a Dielectric Barrier Discharge Device for Enhancement of Small UAV Aerodynamics

2018-10-30
2018-01-1953
As unmanned aerial vehicle applications continue their rise in popularity in the public and private sectors, there is an increasing demand in many cases for smaller, more efficient low speed unmanned aerial vehicles (UAVs). Although the primary drivers for the continued performance improvement of smaller UAV platforms tend to be in the areas of electronics miniaturization and improved energy storage, aerodynamics, particularly in the low Reynolds number regime, still have a significant role in the overall performance enhancement of small UAVs. This paper focuses on the study of the nearfield aerodynamic effects of a low-power active flow enhancement technique known as dielectric barrier discharge (DBD) in very low speed/low Reynolds number flows most closely associated with small and micro unmanned aerial vehicles.
Technical Paper

Recommendation of Experimental Setup and use of Standardized Electrohydrodynamic Dimensionless Parameters for Optimization of a Dielectric Barrier Discharge Flow Control Device

2014-09-16
2014-01-2101
The high demand for traditional air traffic as well as increased use of unmanned aerial systems (UAS) has resulted in researchers examining alternative technologies which would result in safer, more reliable, and better performing aircraft. Active methods of aerodynamic flow control may be the most promising approach to this problem. Research in the area of aerodynamic control is transitioning from traditional mechanical flow control devices to, among other methods, plasma actuators. Plasma actuators offer an inexpensive and energy efficient method of flow control. Dielectric Barrier Discharge (DBD), one of the most widely studied forms of plasma actuation, employs an electrohydrodynamic (EHD) device which uses dominant electric fields for actuation. Unlike traditional flow control methods, a DBD device operates without moving components or mass injection methods.
Technical Paper

Design, Construction, and Operation of a Pneumatic Test Launch Apparatus for sUAS Prototypes

2015-09-15
2015-01-2454
The design and testing of small unmanned aerial vehicle (sUAV) prototypes can provide numerous difficulties when compared to the same process applied to larger aircraft. In most cases, it is desirable to have a better understanding of the low Reynolds number aerodynamics and stability characteristics prior to completion of the final sUAV design. This paper describes the design, construction, and operational performance of a pneumatic launch apparatus that has been used at West Virginia University (WVU) for the development and early flight testing of transforming sUAV platforms. Although other launch platforms exist that can provide the safe launch of such prototypes, the particular launch apparatus constructed at WVU exhibits unmatched launch efficiency, and is far less expensive to operate per shot than any other launch system available.
Technical Paper

CAD/CFD/CAE Modelling of Wankel Engines for UAV

2015-09-15
2015-01-2466
The Wankel engine for Unmanned Aerial Vehicle (UAV) applications delivers advantages vs. piston engines of simplicity, smoothness, compactness and high power-to-weight ratio. The use of computational fluid dynamic (CFD) and computer aided engineering (CAE) tools may permit to address the major downfalls of these engines, namely the slow and incomplete combustion due to the low temperatures and the rotating combustion chambers. The paper proposes the results of CAD/CFD/CAE modelling of a Wankel engine featuring tangential jet ignition to produce faster and more complete combustion.
Technical Paper

Two Stroke Direct Injection Jet Ignition Engines for Unmanned Aerial Vehicles

2015-09-15
2015-01-2424
Unmanned Aerial Vehicles (UAV) require simple and reliable engines of high power to weight ratio. Wankel and two stroke engines offer many advantages over four stroke engines. A two stroke engines featuring crank case scavenging, precise oiling, direct injection and jet ignition is analyzed here by using CAD, CFD and CAE tools. Results of simulations of engine performances are shown in details. The CFD analysis is used to study fuel injection, mixing and combustion. The CAE model then returns the engine performances over the full range of loads and speeds with the combustion parameters given as an input. The use of asymmetric rather than symmetric port timing and supercharging scavenging is finally suggested as the best avenue to further improve power density and fuel conversion efficiency.
X