Refine Your Search



Search Results

Technical Paper

The Development of a Fourth Generation Hybrid Electric Vehicle at West Virginia University

As a part of the FutureTruck 2000 advanced technology student vehicle competition sponsored by the US Department of Energy and General Motors, West Virginia University has converted a full-size sport utility vehicle into a high fuel efficiency, low emissions vehicle. The environmental impact of the Chevrolet Suburban SUV, in terms of both greenhouse gas emissions and exhaust emissions, was reduced through hybridization without losing any of the functionality and utility of the base vehicle. The approach taken was one of using a high efficiency, state-of-the-art direct injection, turbocharged diesel engine coupled to a high output electric traction motor for power assist and to recover regenerative braking energy. The vehicle employs a state-of-the-art combination lean NOx catalyst, oxidation catalyst and particulate filter to ensure low exhaust emissions.
Technical Paper

Knock Prediction in Reciprocating Gas-Engines Using Detailed Chemical Kinetics

Two and three-dimensional test cases were simulated using a detailed kinetic mechanism for di-methyl ether to represent methane combustion. A piston-bowl assembly for the compression and expansion strokes with combustion has been simulated at 1500 RPM. A fine grid was used for the 2-D simulations and a rather coarse grid was used for the 3-D calculations together with a k-ε subgrid-scale turbulence model and a partially stirred reactor model with three time scales. Ignition was simulated artificially by increasing the temperature at one point inside the cylinder. The results of these simulations were compared with experimental results. The simulation involved an engine with a homogeneous charge of methane as fuel. Results indicate that pressure fluctuations were captured some time after the ignition started, which indicates knock conditions.
Technical Paper

Exhaust Gas Recirculation in a Lean-Burn Natural Gas Engine

Lean-burn natural gas engines offer attractively low particulate matter emissions and enjoy higher efficiencies than their stoichiometric counterparts. However, even though oxides of nitrogen emissions can be reduced through operation at lambda ratios of greater than 1.3, catalysts cannot reduce the oxides of nitrogen emissions in the oxidizing exhaust environment. Exhaust Gas Recirculation (EGR) offers the potential to reduce engine out oxides of nitrogen emissions by reducing the flame temperature and oxygen partial pressure that encourages their formation during the combustion process. A comparative study involving a change in the nature of primary diluent (air replaced by EGR) in the intake of a Hercules, 3.7 liter, lean-burn natural gas engine has been undertaken in this research. The Hercules engine was equipped with a General Motors electronically controlled EGR valve for low EGR rates, and a slide valve, constructed in house, for high EGR rates.
Technical Paper

Emissions from Trucks and Buses Powered by Cummins L-10 Natural Gas Engines

Both field research and certification data show that the lean burn natural gas powered spark ignition engines offer particulate matter (PM) reduction with respect to equivalent diesel power plants. Concerns over PM inventory make these engines attractive despite the loss of fuel economy associated with throttled operation. Early versions of the Cummins L-10 natural gas engines employed a mixer to establish air/fuel ratio. Emissions measurements by the West Virginia University Transportable Heavy Duty Emissions Testing Laboratories on Cummins L-10 powered transit buses revealed the potential to offer low emissions of PM and oxides of nitrogen, (NOx) but variations in the mixture could cause emissions of NOx, carbon monoxide and hydrocarbons to rise. This was readily corrected through mixer repair or readjustment. Newer versions of the L-10 engine employ a more sophisticated fueling scheme with feedback control from a wide range oxygen sensor.
Technical Paper

Alternative Fuel Truck Evaluation Project - Design and Preliminary Results

The objective of this project, which is supported by the U.S. Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL), is to provide a comprehensive comparison of heavy-duty trucks operating on alternative fuels and diesel fuel. Data collection from up to eight sites is planned. This paper summarizes the design of the project and early results from the first two sites. Data collection is planned for operations, maintenance, truck system descriptions, emissions, duty cycle, safety incidents, and capital costs and operating costs associated with the use of alternative fuels in trucking.
Technical Paper

Numerical Prediction of Knock in a Bi-Fuel Engine

Dedicated natural gas engines suffer the disadvantages of limited vehicle range and relatively few refueling stations. A vehicle capable of operating on either gasoline or natural gas allows alternative fuel usage without sacrificing vehicle range and mobility. However, the bi-fuel engine must be made to provide equal performance on both fuels. Although bi-fuel conversions have existed for a number of years, historically natural gas performance is degraded relative to gasoline due to reduced volumetric efficiency and lower power density of CNG. Much of the performance losses associated with CNG can be overcome by increasing the compression ratio. However, in a bi-fuel application, high compression ratios can result in severe engine knock during gasoline operation. Variable intake valve timing, increased exhaust gas recirculation and retarded ignition timing were explored as a means of controlling knock during gasoline operation of a bi-fuel engine.
Technical Paper

A Long Term Field Emissions Study of Natural Gas Fueled Refuse Haulers in New York City

New York City Department of Sanitation has operated natural gas fueled refuse haulers in a pilot study: a major goal of this study was to compare the emissions from these natural gas vehicles with their diesel counterparts. The vehicles were tandem axle trucks with GVW (gross vehicle weight) rating of 69,897 pounds. The primary use of these vehicles was for street collection and transporting the collected refuse to a landfill. West Virginia University Transportable Heavy Duty Emissions Testing Laboratories have been engaged in monitoring the tailpipe emissions from these trucks for seven-years. In the later years of testing the hydrocarbons were speciated for non-methane and methane components. Six of these vehicles employed the older technology (mechanical mixer) Cummins L-10 lean burn natural gas engines.
Technical Paper

A Parametric Study of Knock Control Strategies for a Bi-Fuel Engine

Until a proper fueling infrastructure is established, vehicles powered by natural gas must have bi-fuel capability in order to avoid a limited vehicle range. Although bi-fuel conversions of existing gasoline engines have existed for a number of years, these engines do not fully exploit the combustion and knock properties of both fuels. Much of the power loss resulting from operation of an existing gasoline engine on compressed natural gas (CNG) can be recovered by increasing the compression ratio, thereby exploiting the high knock resistance of natural gas. However, gasoline operation at elevated compression ratios results in severe engine knock. The use of variable intake valve timing in conjunction with ignition timing modulation and electronically controlled exhaust gas recirculation (EGR) was investigated as a means of controlling knock when operating a bi-fuel engine on gasoline at elevated compression ratios.
Technical Paper

Exhaust Emissions and Combustion Stability in a Bi-Fuel Spark Ignition Engine

A Saturn 1.9 liter engine has been converted for operation on either compressed natural gas or gasoline. A bi-fuel controller (BFC) that uses closed-loop control methods for both fuel delivery and spark advance has been developed. The performance and emissions during operation on each fuel have been investigated with the BFC, as well as the performance and emissions with the stock original equipment manufacturer (OEM) controller using gasoline. In-cylinder pressure was measured at a rate of 1024 points per revolution with piezoelectric pressure transducers flush-mounted in the cylinder head. The in-cylinder pressure was used in real time for ignition timing control purposes, and was stored by a data acquisition system for the investigation of engine stability and differences in the combustion properties of the fuels.
Technical Paper

Fuel Composition Effects in a CI Engine Converted to SI Natural Gas Operation

Low-carbon fuels such as natural gas (NG) have the potential to lower the demand of petroleum-based fuels, reduce engine-out emissions, and increase IC engine thermal efficiency. One of the most rapid and efficient use of NG in the transportation sector would be as a direct replacement of the diesel fuel in compression ignition (CI) engines without any major engine modifications to the combustion chamber such as new pistons and/or engine head. An issue is the large variation in NG composition with the location and age of the gas well across U.S., which would affect engine operation, as well as the technology integration with emissions after treatment systems. This study used a conventional CI engine modified for spark ignition (SI) NG operation to investigate the effects of methane and a C1-C4 alkane blend on main combustion parameters like in-cylinder pressure, apparent heat release rate, IMEP, etc.
Technical Paper

Continuously Varying Exhaust Outlet Diameter to Improve Efficiency and Emissions of a Small SI Natural Gas Two-Stroke Engine by Internal EGR

With continuously increasing concern for the emissions from two-stroke engines including regulated hydrocarbon (HC) and oxides of nitrogen (NOx) emissions, non-road engines are implementing proven technologies from the on-road market. For example, four stroke diesel generators now include additional internal exhaust gas recirculation (EGR) via an intake/exhaust valve passage. EGR can offer benefits of reduced HC, NOx, and may even improve combustion stability and fuel efficiency. In addition, there is particular interest in use of natural gas as fuel for home power generation. This paper examines exhaust throttling applied to the Helmholtz resonator of a two-stroke, port injected, natural gas engine. The 34 cc engine was air cooled and operated at wide-open throttle (WOT) conditions at an engine speed of 5400 RPM with fueling adjusted to achieve maximum brake torque. Exhaust throttling served as a method to decrease the effective diameter of the outlet of the convergent cone.
Technical Paper

and Repeatability of Transient Heat Release Analysis for Heavy Duty Diesel Engines

Reduced emissions, improved fuel economy, and improved performance are a priority for manufacturers of internal combustion engines. However, these three goals are normally interrelated and difficult to optimize simultaneously. Studying the experimental heat release provides a useful tool for combustion optimization. Heavy-duty diesel engines are inherently transient, even during steady state operation engine controls can vary due to exhaust gas recirculation (EGR) or aftertreatment requirements. This paper examines the heat release and the derived combustion characteristics during steady state and transient operation for a 1992 DDC series 60 engine and a 2004 Cummins ISM 370 engine. In-cylinder pressure was collected during repeat steady state SET and the heavy-duty transient FTP test cycles.
Technical Paper

Emissions of NOx, NH3 and Fuel Consumption Using High and Low Engine-Out NOx Calibrations to Meet 2010 Heavy Duty Diesel Engine Emission Standards

For engine operations involving low load conditions for an extended amount of time, the exhaust temperature may be lower than that necessary to initiate the urea hydrolyzation. This would necessitate that the controller interrupt the urea supply to prevent catalyst fouling by products of ammonia decomposition. Therefore, it is necessary for the engine controller to have multiple calibrations available in regions of engine operation where the aftertreatment does not perform well, so that optimal exhaust conditions are guaranteed during the wide variety of engine operations. In this study the test engine was equipped with a catalyzed diesel particulate filter (DPF) and a selective catalytic reduction system (SCR), and programmed with two different engine calibrations, namely the low-NOx and the low fuel consumption (low-FC).
Technical Paper

Heat Release and Emission Characteristics of B20 Biodiesel Fuels During Steady State and Transient Operation

Biodiesel fuels benefit both from being a renewable energy source and from decreasing in carbon monoxide (CO), total hydrocarbons (THC), and particulate matter (PM) emissions relative to petroleum diesel. The oxides of nitrogen (NOx) emissions from biodiesel blended fuels reported in the literature vary relative to baseline diesel NOx, with no NOx change or a NOx decrease found by some to an increase in NOx found by others. To explore differences in NOx, two Cummins ISM engines (1999 and 2004) were operated on 20% biodiesel blends during the heavy-duty transient FTP cycle and the steady state Supplemental Emissions Test. For the 2004 Cummins ISM engine, in-cylinder pressure data were collected during the steady state and transient tests. Three types of biodiesel fuels were used in the blends: soy, tallow (animal fat), and cottonseed. The FTP integrated emissions of the B20 blends produced a 20-35% reduction in PM and no change or up to a 4.3% increase in NOx over the neat diesel.
Technical Paper

Application of Two Fuel Cells in Hybrid Electric Vehicles

Fuel economy is an important issue in urban driving cycle where vehicles are required to operate most of the time at lower power than the average demand. High power fuel cells operate economically at higher loads. Hence, conventional combination of a high power fuel cell and an additional storage device such as ultracapacitor or battery units does not necessarily provide an economic configuration. This paper offers a new configuration that consists of two fuel cells combined with a battery unit to provide a fuel efficient source of power for hybrid electric fuel cell vehicles in urban driving applications. The control algorithm and power management strategy for a combination of two downsized fuel cells and a storage device is provided and its performance of operation is compared with traditional topologies.
Technical Paper

ExhAUST: DPF Model for Real-Time Applications

Diesel Particulate Filters (DPFs) are well assessed exhaust aftertreatment devices currently equipping almost every modern diesel engine to comply with the most stringent emission standards. However, an accurate estimation of soot content (loading) is critical to managing the regeneration of DPFs in order to attain optimal behavior of the whole engine-after-treatment assembly, and minimize fuel consumption. Real-time models can be used to address challenges posed by advanced control systems, such as the integration of the DPF with the engine or other critical aftertreatment components or to develop model-based OBD sensors. One of the major hurdles in such applications is the accurate estimation of engine Particulate Matter (PM) emissions as a function of time. Such data would be required as input data for any kind of accurate models. The most accurate way consists of employing soot sensors to gather the real transient soot emissions signal, which will serve as an input to the model.
Technical Paper

Analysis of Lightweighting Design Alternatives for Automotive Components

Gasoline-powered vehicles compose the vast majority of all light-duty vehicles in the United States. Improving fuel economy is currently a topic of great interest due to the rapid rise in gasoline costs as well as new fuel-economy and greenhouse-gas emissions standards. The Chevrolet Silverado is currently one of the top selling trucks in the U.S. and has been previously modeled using the commercial finite element code LS-DYNA by the National Crash Analysis Center (NCAC). This state-of the art model was employed to examine alternative weight saving configurations using material alternatives and replacement of traditional steel with composite panels. Detailed mass distribution analysis demonstrated the chassis assembly to be an ideal candidate for weight reduction and was redesigned using Aluminum 7075-T6 Alloy and Magnesium Alloy HM41A-F.
Technical Paper

Number Concentration and Size Distributions of Nanoparticle Emissions during Low Temperature Combustion using Fuels for Advanced Combustion Engines (FACE)

Due to tightening emission legislations, both within the US and Europe, including concerns regarding greenhouse gases, next-generation combustion strategies for internal combustion diesel engines that simultaneously reduce exhaust emissions while improving thermal efficiency have drawn increasing attention during recent years. In-cylinder combustion temperature plays a critical role in the formation of pollutants as well as in thermal efficiency of the propulsion system. One way to minimize both soot and NOx emissions is to limit the in-cylinder temperature during the combustion process by means of high levels of dilution via exhaust gas recirculation (EGR) combined with flexible fuel injection strategies. However, fuel chemistry plays a significant role in the ignition delay; hence, influencing the overall combustion characteristics and the resulting emissions.
Technical Paper

System Architecture for Cooperative Vehicle-Pedestrian Safety Applications Using DSRC Communication

Pedestrians account for a significant ratio of traffic fatalities; as a result, research on methods of reducing vehicle-pedestrian crashes is of importance. In this paper, we describe a system architecture that allows the use of vehicle-to-pedestrian (V2P) communication as a means of generating situational awareness and eventually predicting hazards and warning drivers and pedestrians. In contrast, vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication for safety applications, V2P has not received much attention. One major reason for this lack of attention had been the unavailability of communication mechanisms between pedestrians and vehicles. Recent advances in enabling Wi-Fi and dedicated short range communication (DSRC) based communication using smart-phones is changing this picture. As a result, V2P communication can be considered as a possible solution.
Technical Paper

Two Stroke Direct Injection Jet Ignition Engines for Unmanned Aerial Vehicles

Unmanned Aerial Vehicles (UAV) require simple and reliable engines of high power to weight ratio. Wankel and two stroke engines offer many advantages over four stroke engines. A two stroke engines featuring crank case scavenging, precise oiling, direct injection and jet ignition is analyzed here by using CAD, CFD and CAE tools. Results of simulations of engine performances are shown in details. The CFD analysis is used to study fuel injection, mixing and combustion. The CAE model then returns the engine performances over the full range of loads and speeds with the combustion parameters given as an input. The use of asymmetric rather than symmetric port timing and supercharging scavenging is finally suggested as the best avenue to further improve power density and fuel conversion efficiency.