Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

A De-Spin and Wings-Leveling Controller for a 40 mm Hybrid Projectile

2013-09-17
2013-01-2262
A Hybrid Projectile (HP) is a round that transforms into a UAV after being launched. Some HP's are fired from a rifled barrel and must be de-spun and wings-level for lifting surfaces to be deployed. Control surfaces and controllers for de-spinning and wings-leveling were required for initial design of an HP 40 mm. Wings, used as lifting surfaces after transformation, need to be very close to level with the ground when deployed. First, the tail surface area needed to de-spin a 40 mm HP was examined analytically and simulated. Next, a controller was developed to maintain a steady de-spin rate and to roll-level the projectile in preparation of wing deployment. The controller was split into two pieces, one to control de-spin, and the other for roll-leveling the projectile. An adaptable transition point for switching controllers was identified analytically and then adjusted by using simulations.
Technical Paper

The Optimization of MOP Control Strategy for a Range-Extended Electric Vehicle Based on GA

2017-10-08
2017-01-2464
The range-extended electric vehicle (REEV) is a complex nonlinear system powered by internal combustion engine and electricity stored in battery. This research proposed a Multiple Operation Points (MOP) control strategy of REVV based on operation features of REEV and the universal characteristic curve of the engine. The switching logic rules of MOP strategy are designed for the desired transition of the operation mode, which makes the engine running at high efficiency region. A Genetic algorithm (GA) is adapted to search the optimal solution. The fuel consumption is defined as the target cost function. The demand power of engine is defined as optimal variable. The state of charge (SOC) and vehicle speed are selected as the state variables. The dynamic performance of vehicle and cycling life of battery is set as the constraints. The optimal switching parameters are obtained based on this control strategy. Finally, a dynamic simulation model of REEV is developed in Matlab/Simulink.
Technical Paper

Hybrid Projectile Transformation Condition Detection System for Extended Selectable Range

2013-09-17
2013-01-2203
A Hybrid Projectile (HP) is a tube launched munition that transforms into a gliding UAV, and is currently being researched at West Virginia University. In order to properly transform, the moment of transformation needs to be controlled. A simple timer was first envisioned to control transformation point for maximum distance. The distance travelled or range of an HP can directly be modified by varying the launch angle. In addition, an internal timer would need to be reprogrammed for any distance less than maximum range due to the nominal time to deployment varying with launch angle. A method was sought for automatic wing deployment that would not require reprogramming the round. A body angle estimation system was used to estimate the pitch of the HP relative to the Earth to determine when the HP is properly oriented for the designed glide slope angle. It also filters out noise from an inertial measurement unit (IMU).
Technical Paper

CAD/CFD/CAE Modelling of Wankel Engines for UAV

2015-09-15
2015-01-2466
The Wankel engine for Unmanned Aerial Vehicle (UAV) applications delivers advantages vs. piston engines of simplicity, smoothness, compactness and high power-to-weight ratio. The use of computational fluid dynamic (CFD) and computer aided engineering (CAE) tools may permit to address the major downfalls of these engines, namely the slow and incomplete combustion due to the low temperatures and the rotating combustion chambers. The paper proposes the results of CAD/CFD/CAE modelling of a Wankel engine featuring tangential jet ignition to produce faster and more complete combustion.
Technical Paper

Two Stroke Direct Injection Jet Ignition Engines for Unmanned Aerial Vehicles

2015-09-15
2015-01-2424
Unmanned Aerial Vehicles (UAV) require simple and reliable engines of high power to weight ratio. Wankel and two stroke engines offer many advantages over four stroke engines. A two stroke engines featuring crank case scavenging, precise oiling, direct injection and jet ignition is analyzed here by using CAD, CFD and CAE tools. Results of simulations of engine performances are shown in details. The CFD analysis is used to study fuel injection, mixing and combustion. The CAE model then returns the engine performances over the full range of loads and speeds with the combustion parameters given as an input. The use of asymmetric rather than symmetric port timing and supercharging scavenging is finally suggested as the best avenue to further improve power density and fuel conversion efficiency.
Technical Paper

A Novel Wankel Engine Featuring Jet Ignition and Port or Direct Injection for Faster and More Complete Combustion Especially Designed for Gaseous Fuels

2015-03-10
2015-01-0007
Hydrogen Internal Combustion Engine (ICE) vehicles using a traditional ICE that has been modified to use hydrogen fuel are an important mid-term technology on the path to the hydrogen economy. Hydrogen-powered ICEs that can run on pure hydrogen or a blend of hydrogen and compressed natural gas (CNG) are a way of addressing the widespread lack of hydrogen fuelling infrastructure in the near term. Hydrogen-powered ICEs have operating advantages as all weather conditions performances, no warm-up, no cold-start issues and being more fuel efficient than conventional spark-ignition engines. The Wankel engine is one of the best ICE to be converted to run hydrogen. The paper presents some details of an initial investigation of the CAD and CAE modeling of a novel design where two jet ignition devices per rotor are replacing the traditional two spark plugs for a faster and more complete combustion.
Technical Paper

Regenerative Braking of a 2015 LMP1-H Racing Car

2015-09-27
2015-01-2659
Regenerative braking coupled to small high power density engines are becoming more and more popular in motorsport applications delivering improved performances while increasing similarities and synergies in between road and track applications. Computer aided engineering (CAE) tools integrated with the telemetry data of the car are an important component of the product development. This paper presents the CAE model developed to describe the race track operation of a LMP1-H racing car covering one lap of the Le Mans circuit. The friction and regenerative braking is discussed.
X