Refine Your Search

Topic

Search Results

Technical Paper

Optimization of Shifting Schedule of Vehicle Coasting Mode Based on Dynamic Mass Identification

2020-04-14
2020-01-1321
Correct shifting schedule of vehicle coasting mode play a vital role in improving vehicle comfort and economy. At present, the calibration of the transmission shifting schedule ignores the impact of vehicle’s dynamic mass. This paper proposes a method for optimizing the shifting schedule of the coasting modes with gear based on the dynamic mass identification of the vehicle. This method identifies the dynamic mass of the vehicle during driving and substitute them into the process of solving the shifting schedule parameters. Then we get the optimal shifting schedule. At first, establish the Extended Kalman Filter to Pre-process the experimental data, reducing errors caused by excessive data fluctuations. Then, establishing a weighted squares estimation model based on particle swarm optimization to identify the dynamic mass of the vehicle.
Journal Article

Boiling Coolant Vapor Fraction Analysis for Cooling the Hydraulic Retarder

2015-04-14
2015-01-1611
The hydraulic retarder is the most stabilized auxiliary braking system [1-2] of heavy-duty vehicles. When the hydraulic retarder is working during auxiliary braking, all of the braking energy is transferred into the thermal energy of the transmission medium of the working wheel. Theoretically, the residual heat-sinking capability of the engine could be used to cool down the transmission medium of the hydraulic retarder, in order to ensure the proper functioning of the hydraulic retarder. Never the less, the hydraulic retarder is always placed at the tailing head of the gearbox, far from the engine, long cooling circuits, which increases the risky leakage risk of the transmission medium. What's more, the development trend of heavy load and high speed vehicle directs the significant increase in the thermal load of the hydraulic retarder, which even higher than the engine power.
Technical Paper

Parameter Optimization of Two-Speed AMT Electric Vehicle Transmission System

2020-04-14
2020-01-0435
At present, many electric vehicles are often equipped with only a single-stage final drive. Although the single-stage speed ratio can meet the general driving requirements of electric vehicles, if the requirements of the maximum speed and the requirements for starting acceleration or climbing are met at the same time, the power demand of the drive motor is relatively large, and the efficient area of the drive motor may be far away from the operating area corresponding to daily driving. If the two-speed automatic transmission is adopted, the vehicle can meet the requirements of maximum speed, starting acceleration and climbing at the same time, reduce the power demand of the driving motor, and improve the economy under certain power performance. This is especially important for medium and large vehicles.
Technical Paper

Decision Making and Trajectory Planning of Intelligent Vehicle’ s Lane-Changing Behavior on Highways under Multi-Objective Constrains

2020-04-14
2020-01-0124
Discretionary lane changing is commonly seen in highway driving. Intelligent vehicles are expected to change lanes discretionarily for better driving experience and higher traffic efficiency. This study proposed to optimize the decision-making and trajectory-planning process so that intelligent vehicles made lane changes not only with driving safety taken into account, but also with the goal to improve driving comfort as well as to meet the driver’ s expectation. The mechanism of how various factors contribute to the driver’s intention to change lanes was studied by carrying out a series of driving simulation experiments, and a Lane-Changing Intention Generation (LCIG) model based on Bi-directional Long Short-Term Memory (Bi-LSTM) was proposed.
Technical Paper

Research on Objective Drivability Evaluation with Multi-Source Information Fusion for Passenger Car

2020-04-14
2020-01-1044
The drivability plays an important role for marketability and competitiveness of passenger car in meeting some customer requirements, which directly affects the driving experience and the desire of purchasing. In this paper, a framework of objective drivability evaluation with multi-source information fusion for passenger car is proposed. At first, according to vehicle powertrain system and optimization theory, certain vehicle performances, which are closely related to objective drivability are analyzed, including vehicle longitudinal acceleration, vehicle speed, engine torque, engine speed, gear position, accelerator pedal, brake signal and voltage signal. Then, combined with the evaluation criterion of signal-to-noise ratio (SNR), mean error (ME), root mean squared error (RMSE) and signal smoothness (SS), a de-noising method is developed for the drivability evaluation information.
Technical Paper

Automatic Parking Control Algorithms and Simulation Research Based on Fuzzy Controller

2020-04-14
2020-01-0135
With the increase of car ownership and the complex and crowded parking environment, it is difficult for drivers to complete the parking operation quickly and accurately, which may cause traffic accidents such as vehicle collisions and road jams because of poor parking skills. The emergence of an automatic parking system can help drivers park safely and reduce the occurrence of safety accidents. In this paper, the neural network identifier on the control method of an adaptive integral derivative of a neural network is proposed for an automatic parallel parking system with front-wheel steering is studied by using MATLAB/Simulink environment, and the simulation is carried out. Firstly, according to vehicle parameters and obstacle avoidance constraints, the minimum parking space, and parking starting position are calculated. Meanwhile, the path planning of parallel parking spaces is carried out by quintic polynomial.
Technical Paper

Analysis and Evaluation of the Urban Bus Driving Cycle on Fuel Economy

2007-07-23
2007-01-2073
On-road testing of driving performance of the urban bus was carried out, and a representative urban bus driving cycle was developed after on-road testing, according to the test results. Then, the vehicle simulation software AVL CRUISE was used to simulate the dynamic behavior of the urban bus. It involves the simulation of complete drive train system and the driver behavior. The model is validated by comparing the results of the simulation to the results of the field test. Then the developed driving cycle is evaluated by fuel consumption resulted from the simulation and engine bench test on fuel economy.
Technical Paper

Modeling and Simulation Research of Dual Clutch Transmission Based On Fuzzy Control

2007-08-05
2007-01-3754
Dual-Clutch-Transmission (DCT) is one kind new automatic transmission which has double clutch structure. The most important unit of DCT is Transmission-Control-Module (TCM).In the development process of TCM, simulation is an important research tools. We have analyzed the DCT principle of work, established its mathematical model, created the charge and discharge oil models of typical wet dual clutch transmission, established the control logic to unify and separate double clutch in turn, and also designed out the shift control using fuzzy control using MATLAB/Simulink software. Utilizing engine model, driver model, the DCT model, the TCM model, the vehicle model, established the vehicle simulation model, and implemented simulation; Result indicated that, the established model can correctly reflect the torque and speed change when shifted gears and can correctly realize the automatic shift gears.
Technical Paper

Intelligent Control of Metal-belt CVT Based on Fuzzy Logic

2009-04-20
2009-01-1535
Operating level of a metal-belt CVT mainly rest with the ECU. Conventional control strategies which were obtained from tests or PID controller can not correspond to the driver’s intention or provide various driving environments. It is considered that control targets of metal-belt CVT could be distinguished by a speed ratio, line pressure and starting element till now. Running performance of automobile with a CVT mainly depends on the speed ratio control. An adapted fuzzy logic ratio control algorithm is suggested and optimized. A throttle position and its changing rate will be inputs of the FLC to meet the driver’s intention and make the intelligent control come true. A fuzzy logic line pressure control algorithm is also suggested and optimized corresponding to the complicated high line pressure control.
Technical Paper

Heavy Truck Driveline Components Modeling and Thermal Analyzing

2009-10-06
2009-01-2905
In heavy truck driveline system, the components often include clutch, transmission, transfer case, drive shaft, etc. A fluid torque converter could be equipped in front of the transmission in order to improve the starting performance. Meanwhile, a hydraulic retarder could be introduced for auxiliary braking so as to adapt the truck to the brake on long downgrade in mountainous regions. Thus, the driveline heat load would have a notable increase. Both the fluid torque converter and the hydraulic retarder would produce a large quantity of heat, and a special cooling system is needed for adjusting the transmission fluid temperature with which the gains are potentially very large [1]. The heat load for driveline is often calculated based on empirical formula. For the heavy truck, however, if the heat value is underestimated, driveline components would suffer from overheated damage.
Technical Paper

Model-Based Pressure Control for an Electro Hydraulic Brake System on RCP Test Environment

2016-09-18
2016-01-1954
In this paper a new pressure control method of a modified accumulator-type Electro-hydraulic Braking System (EHB) is proposed. The system is composed of a hydraulic motor pump, an accumulator, an integrated master cylinder, a pedal feel simulator, valves and pipelines. Two pressurizing modes are switched between by-motor and by-accumulator to adapt different pressure boost demands. A differentiator filtering raw sensor signal and calculating pedal speed is designed. By using the pedal feel simulator, the relationship between wheel pressures and brake force is decoupled. The relationships among pedal displacement, pedal force and wheel pressure are calibrated by experiments. A model-based PI controller with predictor is designed to lower the influences caused by delay. Moreover, a self-tuning regulator is introduced to deal with the parameter’s time-varying caused by temperature, brake pads wearing and delay variation.
Technical Paper

Research on Matching for the Rankine Cycle Evaporate-condensate System of Hydraulic Retarder

2016-09-18
2016-01-1938
The hydraulic retarder is an auxiliary braking device used for commercial vehicle in a long slope brake, and its transmission oil generates a lot of heat in its working process. If the heat of transmission doesn’t go through a reasonable management, it will seriously affect the braking performance of hydraulic retarder. To cool down the transmission oil, it will aggravates the load of the engine cooling system, and the long cooling path sometimes causes heat exchange not timely. When the Rankine cycle is used for cooling the hydraulic retarder transmission oil in virtue of its good heat transfer performance in phase change process, it can make the transmission oil temperature controlled more stable. In this new system, the setting parameters of the Evaporate-condensate system will affect the stability of the transmission oil temperature in the hydraulic retarder inlet and the energy recovery efficiency of the system.
Technical Paper

The Driving Behavior Data Acquisition and Identification Based on Vehicle Bus

2016-09-14
2016-01-1888
This research is based on the Controller Area Network (CAN) bus, and briefly analyzed its communication protocol with reference to the layered model of Open System Interconnect Reference Model (OSI). Subsequently, a data acquisition system was designed and developed including a Vehicle Communication Interface (VCI) and a laptop. After the overall architecture was built, the communication mechanism of the VCI was studied. Furthermore, the lap top app was built using the layered design followed by the implementation of a scheme for data collection and experimentation involving the test driving of a real car on road. Finally, the driving style was identified by means of fuzzy reasoning and solving ambiguity based on fuzzy theory; via training the acceleration sample and forecast using the excellent learning and generalization ability of Support Vector Machine (SVM) for high-dimensional, finite samples.
Technical Paper

Research on Transmission Efficiency of Mechanical Transmission Based on Test Bench

2016-10-17
2016-01-2356
This paper mainly researches transmission efficiency (TE) of mechanical transmission in relation to the temperature of lubricating oil. Firstly the formula of TE is calculated about the kinematic viscosity of lubricating oil, then analyze the relationship between kinematic viscosity and temperature of lubricating oil, and finally the formula of TE which is related to the oil temperature is put forward. In order to verify the theoretical formula, the test bench for mechanical transmission is designed, which is used to research the N109 transmission of one mini car. The bench can be used to measure the curve of TE under different speed , load and lubricating oil temperature. The optimum operating temperature of the transmission is obtained by analyzing the measured data and theoretical calculation results. The test bench adopts 2 AC asynchronous motors to respectively simulate the driving and load performance of a vehicle.
Technical Paper

Experimental Study of Hydraulic Retarder Waste Heat Recovery Based on the Organic Rankine Cycle

2016-09-27
2016-01-8079
The hydraulic retarder is an important auxiliary braking device. With merits such as its high braking torque, smooth braking, low noise, long service life and small size, it is widely used on modern commercial vehicles. Transmission fluid of traditional hydraulic retarder is cooled by engine cooling system, which exhausts the heat directly and need additional energy consumption for the thermal management component. On account of the working characteristics of hydraulic retarder, this study designs a set of waste heat recovery system based on the Organic Rankine Cycle (ORC). Under the premise of ensuring stable performance of hydraulic retarder, waste heat energy in transmission fluid is recycled to supplement energy requirements for cooling system. First of all, a principle model, which is scaled down according to D300 retarder`s thermal power generation ration of 1:100, is established. Then through theoretical calculations, components' structural parameters of the ORC are determined.
Technical Paper

The Energy Saving of Cooling Fan with Electro-Hydraulic Motors Based on Fuzzy Control

2016-09-27
2016-01-8117
The cooling system with two fans is generally driven by electrical motors in the small cars. Compared with the traditional cars, heavy duty trucks have the larger heat dissipation power of cooling system. The motors power consumption of dual fans will be larger and the two electrical motors will occupy a large space in the engine cabin. Hydrostatic drive refers to the cooling fan is driven by hydraulic motor, but it has the low transmission efficiency. According to the engine water temperature value and the actual working status of the hydraulic system, the actual speed of cooling fan can be controlled by the computer, which guarantees the normal working water temperature of the engine. Hydrostatic drive is generally applied to heavy vehicles, engineering machinery and excavators as driving source of cooling fan which contains the advantages of large output power, overload protection, continuous speed regulation and flexible space arrangements.
Technical Paper

Effects Analysis and Modeling of Different Transmission Running Conditions for Transmission Efficiency

2016-04-05
2016-01-1096
Several factors including internal factors which are related to the structure and components of transmission and external factors which are related to the running condition influence transmission efficiency (TE) collectively. Selected one manual transmission as the research object, this paper mainly analyzes factors including gears and bearings power loss through theoretical calculation and the external factors, such as gears, temperature and torque. Firstly, with a methodology, the overall efficiency of the manual transmission is calculated based on factors. Then, this paper discusses efficiency through external factor. This transmission is experimented on transmission test bench. On the bench, the driving motor (DM) simulates the power input of engine and the load motor (LM) simulates the whole resistance of vehicle. The mechanical transmission is operating in different speeds, torques and work temperature, thus the corresponding data are obtained.
Technical Paper

Effect of Temperature on Braking Efficiency Stability of Magnetorheological Fluid Auxiliary Braking Devices

2017-09-17
2017-01-2510
Fluid auxiliary braking devices can provide braking torque through hydraulic damping, fluid auxiliary braking devices can also convert vehicular inertia energy into transmission fluid heat energy during the braking, which can effectively alleviate the work pressure of the main brake. Traditional hydraulic auxiliary braking devices use transmission fluids to transmit torque, however, there is a certain lag effect during the braking. The magnetorheological fluid (MR fluid) can also be used to transmit torque because it has the advantages of controlling braking torque linearly and responding fast to the magnetic field changed. The temperature of MR fluid will increase when the vehicle is engaged in continuous braking. MR fluid temperature changes will cause a bad influence on the efficiency stability of auxiliary braking.
Technical Paper

A Comparative Study on Fuel Economy for CVT and 9-speed AT based Vehicles

2017-10-08
2017-01-2435
It is well-known that, compared with automatic transmissions (ATs), continuously variable transmission (CVT) shows advantages in fuel saving due to its continuous shift manner, since this feature enables the engine to operate in the efficiency-optimized region. However, as the AT gear number increases and the ratio gap narrows, this advantage of CVT is challenged. In this paper, a comparative study on fuel economy for a CVT based vehicle and a 9-speed automatic transmission (AT) based vehicle is proposed. The features of CVT and AT are analyzed and ratio control strategies for both the CVT and 9-speed AT based vehicles are designed from the view point of vehicle fuel economy, respectively. For the 9-speed AT, an optimal gear shift map is constructed. With this gear shift map, the optimal gear is selected as vehicle velocity and driving condition vary.
Technical Paper

Simulation Study on Vehicle Road Performance with Hydraulic Electromagnetic Energy-Regenerative Shock Absorber

2016-04-05
2016-01-1550
This paper presents a novel application of hydraulic electromagnetic energy-regenerative shock absorber (HESA) into commercial vehicle suspension system and vehicle road performance are simulated by the evaluating indexes (e.g. root-mean-square values of vertical acceleration of sprung mass, dynamic tire-ground contact force, suspension deflection and harvested power; maximum values of pitch angle and roll angle). Firstly, the configuration and working principle of HESA are introduced. Then, the damping characteristics of HESA and the seven-degrees-of-freedom vehicle dynamics were modeled respectively before deriving the dynamic characteristics of a vehicle equipped with HESA. The control current is fixed at 7A to match the similar damping effect of traditional damper on the basis of energy conversion method of nonlinear shock absorber.
X