Refine Your Search

Topic

Search Results

Journal Article

The Energy Management for Solar Powered Vehicle Parking Ventilation System

2015-04-14
2015-01-0149
In summer, when vehicle parks in direct sunlight, the closed cabin temperature would rise sharply, which affects the occupants step-in-car comfort Solar powered vehicle parking ventilation system adopts the solar energy to drive the original ventilator. Thus, the cabin temperature could be dramatically decreased and the riding comfort could be also improved. This research analyzed the modified crew cabin thermal transfer model. Then the performance of the solar powered ventilation system is analyzed and optimized combined with the power supply characteristics of the photovoltaic element. The storage and reuse of the solar power is achieved on condition that the cabin temperature could be steadily controlled. The research shows that, the internal temperature is mainly affected by the solar radiation intensity and the environment temperature.
Technical Paper

Research on Solar Thermal Energy Warming Diesel Engine Based on Reverse Heat Transfer of Coolant

2020-04-14
2020-01-1343
In winter, the temperature of the coldest month is below -20°C. Low temperature makes it difficult to start a diesel engine, combust sufficiently, which increases fuel consumption and pollutes the environment. The use of an electric power-driven auxiliary heating system increases the battery load and power consumption. Solar thermal energy has the advantages of easy access, clean and pollution-free. The coolant in the cylinder block of the diesel engine has a large contact area within the cylinder and is evenly distributed, which can be used as a heat transfer medium for the warm-up. A one-dimensional heat transfer model of the diesel engine block for the coolant warm-up is developed, and the total heat required for the warm-up is calculated by an iterative method in combination with the warm-up target.
Technical Paper

Decision Making and Trajectory Planning of Intelligent Vehicle’ s Lane-Changing Behavior on Highways under Multi-Objective Constrains

2020-04-14
2020-01-0124
Discretionary lane changing is commonly seen in highway driving. Intelligent vehicles are expected to change lanes discretionarily for better driving experience and higher traffic efficiency. This study proposed to optimize the decision-making and trajectory-planning process so that intelligent vehicles made lane changes not only with driving safety taken into account, but also with the goal to improve driving comfort as well as to meet the driver’ s expectation. The mechanism of how various factors contribute to the driver’s intention to change lanes was studied by carrying out a series of driving simulation experiments, and a Lane-Changing Intention Generation (LCIG) model based on Bi-directional Long Short-Term Memory (Bi-LSTM) was proposed.
Technical Paper

Research on the Performance of Battery Thermal Management System Based on Optimized Arrangement of Flat Plate Heat Pipes

2020-04-14
2020-01-0162
The thermal management system is essential for the safe and long-term operation of the power battery. The temperature difference between the individual cells exceeds the acceleration of the battery performance, which leads to battery out of use and affects the performance of the vehicle. Compared with the low heat transfer coefficient of the air-cooling system, the complex structure of the liquid-cooling system and the large quality of phase change material system, the heat pipe has high thermal conductivity, strong isothermal performance and light weight, it’s an efficient cooling element that can be used for thermal management. In this study, the flat plate heat pipe(FPHP) is used to manage the temperature of the battery, through experiments, the optimized placement of the flat heat pipe is obtained.
Technical Paper

Research on the Performance of Magnetorheological Fluid Auxiliary Braking Devices Thermal Management System Based on Flat Plate Heat Pipes

2020-04-14
2020-01-0894
To prevent braking recession, heavy commercial vehicles are often equipped with fluid auxiliary braking devices, such as hydraulic retarder. Hydraulic retarder can convert the vehicle’s kinetic energy to the fluid heat energy, which can enormously alleviate the main brake’s workload. The traditional hydraulic retarder can provide enough braking torque but has a delay during the braking. In this paper, a new type of magnetorheological fluid (MR fluid) hydraulic retarder is introduced by replacing the traditional fluid with magnetorheological fluid because of its linear braking torque and quick response. By changing the magnetic field intensity, it is easier to control the braking torque than the traditional hydraulic retarder. The rise of magnetorheological fluid temperature during the braking period will reduce the hydraulic retarder’s performance.
Technical Paper

Research on Objective Drivability Evaluation with Multi-Source Information Fusion for Passenger Car

2020-04-14
2020-01-1044
The drivability plays an important role for marketability and competitiveness of passenger car in meeting some customer requirements, which directly affects the driving experience and the desire of purchasing. In this paper, a framework of objective drivability evaluation with multi-source information fusion for passenger car is proposed. At first, according to vehicle powertrain system and optimization theory, certain vehicle performances, which are closely related to objective drivability are analyzed, including vehicle longitudinal acceleration, vehicle speed, engine torque, engine speed, gear position, accelerator pedal, brake signal and voltage signal. Then, combined with the evaluation criterion of signal-to-noise ratio (SNR), mean error (ME), root mean squared error (RMSE) and signal smoothness (SS), a de-noising method is developed for the drivability evaluation information.
Journal Article

Research on Driving Posture Comfort Based on Relation between Drivers' Joint Angles and Joint Torques

2014-04-01
2014-01-0460
Driving comfort is one of the most important indexes for automobile comfort. Driving posture comfort is closely related to the drivers' joint angles and joint torques. In present research, a new method is proposed to identify the most comfortable driving posture based on studying the relation between drivers' joint angles and joint torques. In order to truly reflect a driving situation, the accurate human driving model of 50 percent of the size of Chinese male is established according to the human body database of RAMSIS firstly. Biomechanical model based on accurate human driving model is also developed to analyze and obtain dynamic equations of human driving model by employing Kane method. The joint torque-angle curves of drivers' upper and lower limbs during holding wheel or pedal operation can be obtained through dynamic simulation in the MATLAB. Through curve-fitting analysis, the minimum joint torque of a driver' limb and the optimal joint angel can be found.
Technical Paper

Engine Cycle Simulation and Development Engine of a Gasoline

2007-10-29
2007-01-4103
In order to acquire low fuel consumption while the engine is running at low speeds and maintain the high power output of the traditional 4-valve engine at high speeds, multiple camshafts were applied in gasoline engines. An engine cycle simulation process of a gasoline engine with multiple camshaft profiles was presented in this paper. Engine cycle models were set up to describe external characteristic at 14 different speeds. A one-dimension model was used to describe the transient heat and mass transfer in pipes of the gasoline engine. In-cylinder combustion model was calibrated by engine test results. The simulation results showed a good agreement with engine testing results. Simulation and experimental research showed the volumetric efficiency and torque were low from 2500rpm to 3500rpm. Some parametrical study was presented for performance improvement of intermediate speeds, including changing induction-pipe length and putting off multiple camshafts shift.
Technical Paper

Analysis and Evaluation of the Urban Bus Driving Cycle on Fuel Economy

2007-07-23
2007-01-2073
On-road testing of driving performance of the urban bus was carried out, and a representative urban bus driving cycle was developed after on-road testing, according to the test results. Then, the vehicle simulation software AVL CRUISE was used to simulate the dynamic behavior of the urban bus. It involves the simulation of complete drive train system and the driver behavior. The model is validated by comparing the results of the simulation to the results of the field test. Then the developed driving cycle is evaluated by fuel consumption resulted from the simulation and engine bench test on fuel economy.
Technical Paper

Study about the Simulation of Vehicle-Pedestrian Collision and Protection

2007-08-05
2007-01-3594
Based on the multi-body system, the work research the injury index of the mathematics models of pedestrian, by simulating the motion of the pedestrian impacted by vehicle using MADYMO. Compared with the article published, verify the dependability of this simulated test. Based on the dependability, Carry on sensitivity analysis to design parameter of the automobile. Research on the pedestrian protection by the vehicle by revising the sensitive design parameter. By simulating the pedestrian impacted by the vehicle which installing the hood raise structure, search on the injury index. Compared with the original injury index, we can find that the hood raise structure be propitious to the pedestrian.
Technical Paper

Study on Diesel-LPG Dual Fuel Engines

2001-09-24
2001-01-3679
A new type of dual fuel supply system has been developed. This system is able to economically convert conventional diesel engines into dual-fuel engines like LPG/Diesel engines and CNG/Diesel engines, which are capable of either using single diesel fuel or using dual-fuel including both diesel and CNG fuel or both diesel and LPG fuel. These diesel-LPG engines have been applied to the diesel buses in the public transportation of Guangzhou city, one of the biggest cities in China, owning to their low soot emissions, excellent operating performances and extremely low cost as well. Compared with the diesel baseline engine, it was found that there were a significant reduction in soot emission and an improvement of the fuel consumption with the diesel-LPG engine. Also the strategy on LPG content is discussed in order to meet the demands for soot emission, fuel economy, transient performance and output power at the same time.
Technical Paper

Energy Consumption of Passenger Compartment Auxiliary Cooling System Based on Peltier Effect

2017-03-28
2017-01-0155
The closed cabin temperature is anticipated to be cooled down when it is a bit hot inside the driving car. The traditional air-condition lowers the cabin temperature by frequently switching the status of the compressor, which increases the engine’s parasitic power and shortens the compressor’s service-life. The semiconductor auxiliary cooling system with the properties of no moving parts, high control precision and quick response has the potential to assist the on-board air-condition in modulating the cabin temperature with relative small ranges. Little temperature differences between the cabin and the outside environment means that the system energy consumption to ensure the occupant comfort is relatively low and the inefficiency could be made up by the renewable energy source.
Technical Paper

Color Variable Speed Limit Sign Visibility for the Freeway Exit Driving Safety

2017-03-28
2017-01-0085
Typical vehicle speed deceleration occurs at the freeway exit due to the driving direction change. Well conducting the driver to control the velocity could enhance the vehicle maneuverability and give drivers more response time when running into potential dangerous conditions. The freeway exit speed limit sign (ESLS) is an effect way to remind the driver to slow down the vehicle. The ESLS visibility is significant to guarantee the driving safety. This research focuses on the color variable ESLS system, which is placed at the same location with the traditional speed limit sign. With this system, the driver could receive the updated speed limit recommendation in advance and without distraction produced by eyes contract change over the dashboard and the front sight. First, the mathematical model of the drivetrain and the engine brake is built for typical motor vehicles. The vehicle braking characteristics with various initial speeds in the deceleration area are studied.
Technical Paper

Safe Travelling Speed of Commercial Vehicles on Curves Based on Vehicle-Road Collaboration

2017-03-28
2017-01-0080
Mountain road winding and bumpy, traffic accidents caused by speeding frequently happened, mainly concentrated on curves. The present curve warning system research are based on Charge-coupled Device, but the existing obstacles, weather , driving at night and road conditions directly affect the accuracy and applicability. The research is of predictability to identify the curves based on the geographic information and can told the driver road information and safety speed ahead of the road according to the commercial vehicle characteristic of load, and the characteristics of the mass center to reduce the incidence of accidents. In this paper, the main research contents include: to estimate forward bend curvature through the node classification method based on the digital map.
Technical Paper

The Research of the Adaptive Front Lighting System Based on GIS and GPS

2017-03-28
2017-01-0041
Automotive Front Lighting System(AFS) can receive the steering signal and the vehicular speed signal to adjust the position of headlamps automatically. AFS will provide drivers more information of front road to protect drivers safe when driving at night. AFS works when there is a steering signal input. However, drivers often need the front road's information before they turn the steering wheel when vehicles are going to go through a sharp corner, AFS will not work in such a situation. This paper studied how to optimize the working time of AFS based on GIS (Geographic Information System) and GPS(Geographic Information System) to solve the problem. This paper analyzed the process of the vehicle is about to go through a corner. Low beams and high beams were discussed respectively.
Technical Paper

Fuel-Efficient Driving for Motor Vehicles Based on Slope Recognition

2017-03-28
2017-01-0037
The drivers' hysteretic perception to surrounding environment will affect vehicular fuel economy, especially for the heavy-duty vehicles driving under complex conditions and long distance in mountainous areas. Unreasonable acceleration or deceleration on the slope will increase the fuel consumption. Improving the performance of the engine and the transmission system has limited energy saving potential, and most fuel-efficient driving assistant systems don't consider the road conditions. The main purpose of this research is to introduce an economic driving scheme with consideration of the prestored slope information in which the vehicle speed in mountainous slopes is reasonably planned to guide the driver's behavior for reduction of the fuel consumption. Economic driving optimization algorithm with low space dimension and fast computation speed is established to plan accurate and real-time economic driving scheme.
Technical Paper

The Driving Behavior Data Acquisition and Identification Based on Vehicle Bus

2016-09-14
2016-01-1888
This research is based on the Controller Area Network (CAN) bus, and briefly analyzed its communication protocol with reference to the layered model of Open System Interconnect Reference Model (OSI). Subsequently, a data acquisition system was designed and developed including a Vehicle Communication Interface (VCI) and a laptop. After the overall architecture was built, the communication mechanism of the VCI was studied. Furthermore, the lap top app was built using the layered design followed by the implementation of a scheme for data collection and experimentation involving the test driving of a real car on road. Finally, the driving style was identified by means of fuzzy reasoning and solving ambiguity based on fuzzy theory; via training the acceleration sample and forecast using the excellent learning and generalization ability of Support Vector Machine (SVM) for high-dimensional, finite samples.
Technical Paper

Research on Transmission Efficiency of Mechanical Transmission Based on Test Bench

2016-10-17
2016-01-2356
This paper mainly researches transmission efficiency (TE) of mechanical transmission in relation to the temperature of lubricating oil. Firstly the formula of TE is calculated about the kinematic viscosity of lubricating oil, then analyze the relationship between kinematic viscosity and temperature of lubricating oil, and finally the formula of TE which is related to the oil temperature is put forward. In order to verify the theoretical formula, the test bench for mechanical transmission is designed, which is used to research the N109 transmission of one mini car. The bench can be used to measure the curve of TE under different speed , load and lubricating oil temperature. The optimum operating temperature of the transmission is obtained by analyzing the measured data and theoretical calculation results. The test bench adopts 2 AC asynchronous motors to respectively simulate the driving and load performance of a vehicle.
Technical Paper

The Research on the Temperature Control Stability of Hydraulic Retarder Oil Based on Organic Rankine Cycle

2016-09-27
2016-01-8085
The hydraulic retarder is an auxiliary braking device generally equipped on commercial vehicles. Its oil temperature change influences the brake performance of hydraulic retarder. The Organic Rankine Cycle (ORC) is a good means to recover exhausted heat. Moreover, it can cool oil and stably control oil temperature with the help of heat absorption related with evaporation. Comprehensively considering the heat-producing characteristics of hydraulic retarder and the temperature control demand, the aimed boundary conditions are determined. Also the changing rules about the working medium flow rate are obtained. In this work, the heat-producing properties of hydraulic retarder under different conditions and the oil external circulating performance is firstly analyzed. By researching the system’s adaptation to the limiting conditions, the aimed temperature to control is prescribed.
Technical Paper

Driving Force Coordinated Control of Separated Axle Hybrid Electric Dump Truck

2017-10-08
2017-01-2462
Due to the increase of mining production and rising labor costs, manufacturers of construction and mining equipment are engaged in developing large tonnage mining truck with good dynamic performance and high transport efficiency. This paper focuses on the improvement of the dynamic performance of a 52t off-highway dump truck. According to the characteristics of its operating cycle, electric auxiliary drive system is installed in the front axle aiming at improving the utilization rate of ground adhesion. The new all-wheel drive hybrid electric system makes it possible for dump truck transports at a higher velocity. Both the conventional dump truck model and the new all-wheel drive hybrid truck model are built based on the AVL-Cruise platform. Meanwhile, under the premise of enough dynamic performance, fuel consumption can be minimized by collaborative optimization in Isight.
X