Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

An Elementary Simulation of Vibration Isolation Characteristics of Hydraulically Damped Rubber Mount of Car Engine

2001-04-30
2001-01-1453
Hydraulically damped rubber engine mounts (HDM) are an effective means of providing sufficient isolation from engine vibration while also providing significant damping to control the rigid body motions of the engine during normal driving conditions. This results in a system which exhibits a high degree of non-linearity in terms of both frequency and amplitude. The numerical simulation of vibration isolation characteristics of HDM is difficult due to the fluid-structure interaction between the main supporting rubber and fluid in chambers, the nonlinear material properties, the large deformation of rubber parts, structure contact problems among the inner parts, and the turbulent flow in the inertia track. In this paper an integrated numerical simulation analysis based on structural FEM and a lumped-parameter model of HDM is carried out.
Technical Paper

Mathematical Modeling of Vehicle Fuel Cell Power System Thermal Management

2003-03-03
2003-01-1146
A mathematical model of vehicle fuel cell system thermal management has been developed to investigate the effects of various design and operating conditions on the thermal management and to understand the underlying mechanism. The fuel cell stack structure is represented by a lumped thermal mass model, which has the heat transfer and pressure loss characteristics of the fuel cell stack structure. The whole thermal management system is discretized into many volumes, where each flowspit is represented by a single volume, and every pipe is divided into one or more volumes. These volumes are connected by boundaries. The model is solved numerically to analyze thermal management system performance. The effects of coolant flow rates and air flow rates on the system thermal performance, the stack thermal capacity on the transient thermal performance have been investigated in detail.
Technical Paper

Study of the Injection Control Valve in a New Electronic Diesel Fuel System

1998-02-23
980813
At first, the dynamic electromagnetic characteristics of a pulsed solenoid valve is analyzed by experiments. The fast valve response is obtained by material modifications. Then, the intelligent solenoid driving method is discussed. The new techniques of the “active” PWM and the “d2i/dt2” detection are developed for feedback control of the solenoid holding current and the valve closure timing. Finally, the control and diagnosis method for the valve closure duration is investigated. A sensing mechanism utilizing momentary camshaft speed fluctuations of fuel injection pump is presented, which provides the basis for feedback control and diagnosis of the valve closure duration and diesel fuel injection process.
Technical Paper

Electro-Hydraulic Integrated Circuits (EHIC) an Introduction

1993-09-01
932400
This paper introduces two new types of basic components (an Electro-Hydraulic Tube and a Hydraulic Tube) which when connected in an appropriate manner can control flow and pressure for many applications; in addition, one of the devices is readily interfacable to a microprocessor for external control. Some background information about the basic concept and the operation of the two components is introduced. Some of the experimental characteristics will be illustrated and several basic circuit examples will be presented to show how the concept can be implemented. The Electro-Hydraulic Integrated Block (EHIB) and Circuit (EHIC) will be introduced followed by a discussion of the advantages and potential of the EHIC concept.
Technical Paper

An Integrated Flow Divider/Combiner Valve Design, Part 2

1993-09-01
932401
The development of high precision flow divider/combiner valves has received considerable attention by the authors over the past decade. Several different valve designs for division and combination of flow have been designed which display small flow dividing/combining error (1-2%) when compared to conventional designs (2-10%). Recent studies have improved upon the design in order to reduce cost, weight and complexity of the valve. This paper will present the latest of the authors research into the development of a high precision, autoregulated flow divider/combiner valve with an integral shuttle valve. The autoregulator extends the operating range of the integrated flow divider/combiner valve (for errors less than 2 %) to 10-50 lpm compared to 30-50 lpm for the unregulated valve.
Technical Paper

An Integrated Flow Divider/Combiner Valve Design, Part 1

1992-09-01
921741
A flow divider valve is a device which allows a single stream of fluid to be split into two paths according to a predetermined ratio and independent of variations or differences in the load pressures. A flow combiner valve combines two paths of fluid into one stream such that the ratio of the flow rates coming into the valve remains independent of any variation or difference between the inlet pressures. This paper describes the design, operation and performance of an integrated flow divider/combiner valve. This design maintains the small flow dividing/combining error of high precision valves (less than 1.5% at rated flow) but incorporates the shuttle valve into the main spool system. This new design reduces the weight of the valve by 20% reducing the cost by approximately 10%. The new structure simplifies the construction of high precision valves and reduces a source of flow dividing/combining error (leakage).
Technical Paper

Simulations on Special Structure ISG Motor Used for Hybrid Electrical Vehicles Aimed at Active Damping

2017-03-28
2017-01-1123
Engine torque fluctuation is a great threat to vehicle comfort and durability. Former researches tried to solve this problem by introducing active damping system, which means the motor is controlled to produce torque ripple with just the opposite phase to that of the engine. By this means, the torque fluctuation produced by the motor and the engine can be reduced. In this paper, a new method is raised. An attempt is proposed by changing the traditional structure of the motor, making it produce ripple torque by itself instead of controlling the motor. In this way a special used ISG (Integrated Starter Generator) motor for HEV (Hybrid Electrical Vehicles) is made to achieve active damping. In order to study the possibility, a simulation, which focus on the motor instead of the whole system, is developed and series-parallel configuration is used in this simulation. As for the motor that used in this paper, four kinds of motors have been investigated and compared.
Technical Paper

Occupant Injury Response Prediction Prior to Crash Based on Pre-Crash Systems

2017-03-28
2017-01-1471
Occupant restraint systems are developed based on some baseline experiments. While these experiments can only represent small part of various accident modes, the current procedure for utilizing the restraint systems may not provide the optimum protection in the majority of accident modes. This study presents an approach to predict occupant injury responses before the collision happens, so that the occupant restraint system, equipped with a motorized pretensioner, can be adjusted to the optimal parameters aiming at the imminent vehicle-to-vehicle frontal crash. The approach in this study takes advantage of the information from pre-crash systems, such as the time to collision, the relative velocity, the frontal overlap, the size of the vehicle in the front and so on. In this paper, the vehicle containing these pre-crash features will be referred to as ego vehicle. The information acquired and the basic crash test results can be integrated to predict a simplified crash pulse.
Technical Paper

Suspension Performance and Energy Harvesting Property Study of a Novel Railway Vehicle Bogie with The Hydraulic-Electromagnetic Energy-Regenerative Shock Absorber

2017-03-28
2017-01-1483
Systematic research on dynamic model, simulation analyses, prototype production and bench tests have been carried out in recent years on the most popular energy-harvesting shock absorbers-the mechanical motion rectifier (MMR), and the hydraulic-electromagnetic energy-regenerative shock absorber (HESA). This paper presents a novel application of the HESA into bogie system of railway vehicles. In order to study the differences of suspension performance and energy harvesting property between first suspension system and second suspension system of the application, simulation models are built in AMESim to make comparison studies on the different department suspensions caused by the nonlinear damping behaviors of the HESA. The simulation results show that the system can effectively reduce the impact between wheel and rail tracks, while maintaining good potential to recycle vibratory energy.
Technical Paper

Driving Fatigue Detection based on Blink Frequency and Eyes Movement

2017-03-28
2017-01-1443
The development of the vehicle quantity and the transportation system accompanies the rise of traffic accidents. Statistics shows that nearly 35-45% traffic accidents are due to drivers’ fatigue. If the driver’s fatigue status could be judged in advance and reminded accurately, the driving safety could be further improved. In this research, the blink frequency and eyes movement information are monitored and the statistical method was used to assess the status of the driving fatigue. The main tasks include locating the edge of the human eyes, obtaining the distance between the upper and lower eyelids for calculating the frequency of the driver's blink. The velocity and position of eyes movement are calculated by detecting the pupils’ movement. The normal eyes movement model is established and the corresponding database is updated constantly by monitoring the driver blink frequency and eyes movement during a certain period of time.
Technical Paper

Vehicle-GIS Assistant Driving System for Real-time Safety Speed Warning on Mountain Roads

2017-03-28
2017-01-1400
Downhill mountain roads are the accident prone sections because of their complexity and variety. Drivers rely more on driving experience and it is very easy to cause traffic accidents due to the negligence or the judgment failure. Traditional active safety systems, such as ABS, having subjecting to the driver's visual feedback, can’t fully guarantee the downhill driving safety in complex terrain environments. To enhance the safety of vehicles in the downhill, this study combines the characteristics of vehicle dynamics and the geographic information. Thus, through which the drivers could obtain the safety speed specified for his/her vehicle in the given downhill terrains and operate in advance to reduce traffic accidents due to driver's judgment failure and avoid the brake overheating and enhance the safety of vehicles in the downhill.
Technical Paper

Research on Vehicle Stability Control Strategy Based on Integrated-Electro-Hydraulic Brake System

2017-03-28
2017-01-1565
A vehicle dynamics stability control system based on integrated-electro-hydraulic brake (I-EHB) system with hierarchical control architecture and nonlinear control method is designed to improve the vehicle dynamics stability under extreme conditions in this paper. The I-EHB system is a novel brake-by-wire system, and is suitable to the development demands of intelligent vehicle technology and new energy vehicle technology. Four inlet valves and four outlet valves are added to the layout of a conventional four-channel hydraulic control unit. A permanent-magnet synchronous motor (PMSM) provides a stabilized high-pressure source in the master cylinder, and the four-channel hydraulic control unit ensures that the pressures in each wheel cylinder can be modulated separately at a high precision. Besides, the functions of Anti-lock Braking System, Traction Control System and Regenerative Braking System, Autonomous Emergency Braking can be integrated in this brake-by-wire system.
Technical Paper

Modeling, Simulation and Experimental Analysis of Brake Pedal Feel for Passenger Car

2017-03-28
2017-01-1371
Brake pedal feel plays an important role in the driver's comprehensive subjective feeling when braking, which directly affects the active safety and riding comfort of passenger car. A systematical mathematical model of the vehicle brake system is built in according with the structure and system characteristics of hydraulic servo brake system. A complete hydraulic servo brake system simulation model composed of brake pedal, vacuum booster, brake master cylinder, brake pipe, brake wheel cylinders, brake calipers is established in AMESim. The effects of rubber reaction plate stiffness, rubber valve opening, brake master cylinder piston, brake caliper, brake pipe deformation and friction liner deformation on brake pedal feel are considered in this model. The accuracy of this model is verified by real road vehicle tests under static and dynamic two different conditions.
Technical Paper

Strength Analysis and Structural Optimization of Lever of Air Disc Brake

2014-09-28
2014-01-2507
Air disc brake (ADB) is the execution unit of automobile brake, which plays a vital role in traffic safety. Lever is a very important driving as well as stress part of ADB. However, seldom periodical or thesis has given specifications about the lever. In this paper, working principle of the lever is illustrated in detail. Finite element analysis (FEA) of the lever is conducted and some structural problems of the lever are found out. Finally, for the condition that the lever doesn't meet the strength requirement, topography optimization is introduced to improve the shape of lever. Simulation results show that the strength of the lever improved obviously with the optimization, and analysis method as well as optimization method in this paper is feasible.
Technical Paper

Combustion and Emission Characteristics of Polyoxymethylene Dimethyl Ethers (PODE)/ Wide Distillation Fuel (WDF) Blends in Diesel Engine

2018-04-03
2018-01-0926
Wide Distillation Fuel (WDF), with a distillation range from Initial Boiling Point of gasoline to Final Boiling Point of diesel, can be easily gained directly by blending diesel with gasoline. However, the reduced auto-ignitability of WDF could lead to higher HC emissions. Polyoxymethylene Dimethyl Ethers (PODE), with good volatility and oxygen content of up to 49%, have great potential to improve combustion and emission characteristics, especially for soot reduction. Experiments were carried out in a light-duty four-cylinder diesel engine fueled with neat diesel, gasoline/diesel blends (GD), GD/PODE blends (GDP) and the combustion and emission characteristics were carefully examined. Results showed that GDP had the lowest PM emission and diesel had the poorest one among the three fuels. Due to the addition of gasoline and the relatively poor ignitability, GD had lower combustion efficiency and higher Soluble Organic Fraction (SOF) emissions than diesel.
Technical Paper

Fuel Economy Analysis of Periodic Cruise Control Strategies for Power-Split HEVs at Medium and Low Speed

2018-04-03
2018-01-0871
Hybridization of vehicles is considered as the most promising technology for automakers and researchers, facing the challenge of optimizing both the fuel economy and emission of the road transport. Extensive studies have been performed on power-split hybrid electric vehicles (PS-HEVs). Despite of the fact that their excellent fuel economy performance in city driving conditions has been witnessed, a bottle neck for further improving the fuel economy of PS-HEVs has been encountered due to the inherent engine-generator-motor power circulation of the power-split system under medium-low speed cruising scenarios. Due to the special mechanical constraints of the power-split device (PSD), the conventional periodic cruising strategy like Pulse and Glide cannot be applied to PS-HEVs directly.
Technical Paper

Mission-based Design Space Exploration for Powertrain Electrification of Series Plugin Hybrid Electric Delivery Truck

2018-04-03
2018-01-1027
Hybrid electric vehicles (HEV) are essential for reducing fuel consumption and emissions. However, when analyzing different segments of the transportation industry, for example, public transportation or different sizes of delivery trucks and how the HEV are used, it is clear that one powertrain may not be optimal in all situations. Choosing a hybrid powertrain architecture and proper component sizes for different applications is an important task to find the optimal trade-off between fuel economy, drivability, and vehicle cost. However, exploring and evaluating all possible architectures and component sizes is a time-consuming task. A search algorithm, using Gaussian Processes, is proposed that simultaneously explores multiple architecture options, to identify the Pareto-optimal solutions.
Technical Paper

Emergency Steering Evasion Control by Combining the Yaw Moment with Steering Assistance

2018-04-03
2018-01-0818
The coordinated control of stability and steering systems in collision avoidance steering evasion has been widely studied in vehicle active safety area, but the studies are mainly aimed at autonomous vehicle without driver or conventional combustion engine vehicle. This paper focuses on the control of hybrid vehicle integrated with rear hub in emergency steering evasion situation, and considering the driver’s characteristics. First, the mathematics model of vehicle dynamics and driver has been given. Second, based on the planned steering evasion path, the model predictive control method is presented for achieving higher evasion path tracking accuracy under driver’s steering input. The prediction model includes an adaptive preview distance driver model and a vehicle dynamics model to predict the driver input and the vehicle trajectory.
Technical Paper

Design Optimization of the Transmission System for Electric Vehicles Considering the Dynamic Efficiency of the Regenerative Brake

2018-04-03
2018-01-0819
In this paper, gear ratios of a two-speed transmission system are optimized for an electric passenger car. Quasi static system models, including the vehicle model, the motor, the battery, the transmission system, and drive cycles are established in MATLAB/Simulink at first. Specifically, since the regenerative braking capability of the motor is affected by the SoC of battery and motors torque limitation in real time, the dynamical variation of the regenerative brake efficiency is considered in this study. To obtain the optimal gear ratios, iterations are carried out through Nelder-Mead algorithm under constraints in MATLAB/Simulink. During the optimization process, the motor efficiency is observed along with the drive cycle, and the gear shift strategy is determined based on the vehicle velocity and acceleration demand. Simulation results show that the electric motor works in a relative high efficiency range during the whole drive cycle.
Technical Paper

Parallel Thermal Management System of the Water Medium Retarder

2018-04-03
2018-01-0777
The thermal management system of the water medium retarder using engine coolant (water and ethylene glycol) as transmission medium, omits oil-water heat exchanger in the structure. When the hydraulic retarder is operated, the valve is connected with the retarder and water pump, and then the engine coolant enters the working chamber. The kinetic energy of the vehicle is converted into internal energy of the coolant, and the heat is discharged to the external environment through the engine thermal management system. The braking torque of the water medium hydraulic retarder is determined by the water medium flow rate in the working chamber. The smaller the valve opening degree, the greater the braking torque and the faster the heating transmission fluid. Small valve opening is not conducive to the loss of heat. It will affect the normal working of the engine and hydraulic retarder.
X