Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Experimental Investigation of Soot Oxidation Characteristic with NO2 and O2 using a Flow Reactor Simulating DPF

2007-04-16
2007-01-1270
Characteristics of soot oxidation were investigated with a carbon black (Printex-U). A flow reactor system which can simulate the condition of diesel particulate filter and diesel exhaust gas (1 bar, O2 0 ∼ 10%, NO2 200 ∼ 900ppm) was designed and used with the temperature programmed oxidation (TPO) and constant temperature oxidation (CTO) techniques. The temperature increase rate was 5°C/min for TPO experiments. From the experiments, the apparent activation energy for carbon oxidation with nitrogen dioxide was determined as 60 ± 3 kJ/mol with the first order of carbon in the range of 10∼90% oxidation and the temperature range of 250∼500°C. This value was exceedingly lower than the activation energy of oxygen oxidation which was 177 ± 1 kJ/mol. When oxygen exists with nitrogen dioxide, the reaction rate increased with the concentration of oxygen. Its rate of increase was faster for low oxygen concentration and slower for high concentration.
Technical Paper

Characterization of Catalyzed Soot Oxidation with NO2, NO and O2 using a Lab-Scale Flow Reactor System

2008-04-14
2008-01-0482
Today's diesel PM reduction systems are mainly based on catalyzed particulate filter(CPF) systems. However, most of their reaction kinetics remain unresolved. Among others, the soot oxidation rate over catalyst is particularly important in the evaluation of the performance of the catalysts and the efficient control of CPF regeneration. This study, therefore, investigated the oxidation rate of carbon black (Printex-U) over various Pt supported catalysts using a flow reactor setup simulating diesel exhaust conditions. Compared to non-catalyzed soot oxidation, the oxidation rate of carbon black over Pt catalysts was to an extent shifted towards low temperatures. This activity enhancement of soot oxidation over a catalyst can be attributed principally to NO to NO2 conversion because NO2 oxidizes soot with much lower activation energy (Ea=60kJ/mol) than O2 (Ea=177kJ/mol).
Technical Paper

Experimental Study on Soot Oxidation Characterization of Pt/CeO2 Catalyst with NO and O2 Using a Flow Reactor System

2009-04-20
2009-01-1475
The oxidation of soot (carbon black) which is assisted by Pt/CeO2 catalyst is studied using a flow reactor system simulating the condition of diesel exhaust. In this study, the temperature programmed oxidation (TPO) scheme is mainly used for different NO and O2 concentrations and soot oxidation rate is evaluated by monitoring both CO and CO2 concentrations. Pt/CeO2 catalyst lowers the temperature of the peak CO/CO2 concentrations significantly when there is either NO or O2. Oxidation starts at 200°C and the peak CO2 concentration is observed at 360°C, which depends on the amount of catalyst and NO concentration. The effect of catalyst on NO2 recycling is also investigated. For this purpose, two different types of sample have been prepared. For the mixed case, 10mg of carbon black is mixed with 50mg of Pt/CeO2 catalyst under conditions of loose contact. For the unmixed case, the catalyst layer is placed on top of soot layer without mixing.
Technical Paper

Comparison of Soot Oxidation by NO2 Only and Plasma-Treated Gas Containing NO2, O2, and Hydrocarbons

2002-10-21
2002-01-2704
NO2 is an effective soot oxidizer operating at lower temperatures than O2. The effect of pure NO2 on soot oxidation was evaluated and compared with the gas treated by plasma, which initially consisted of NO, O2, and hydrocarbons. The cutout of a commercial DPF was used and the pressure difference across the DPF was monitored for an hour. The concentration of NO/NO2, CO, CO2 at the outlet of the DPF was measured as a function of time. CO and CO2 concentration was measured periodically by gas chromatography. The experiment was performed at 230, 250, 300, 350°C. When NO2 only was used as an oxidizing agent, there was a close relationship between the decrease of the pressure difference across the DPF, the CO and CO2 concentration at the outlet of the DPF, and the back conversion of NO2 to NO.
X