Refine Your Search

Topic

Search Results

Standard

SKID CONTROL SYSTEM VIBRATION SURVEY

1997-03-01
HISTORICAL
AIR764C
This technical report documents three surveys to determine realistic vibration requirements for skid control systems specifications and obtain updated vibration information for locations in aircraft where skid control system components are mounted.
Standard

Use of Structural Carbon Heat Sink Brakes on Aircraft

1996-05-01
CURRENT
AIR1934A
The purpose of this document is to relate areas where carbon brake technology may differ from traditional steel brake technology in design and performance. Carbon brakes have been used on military aircraft for many years and are now frequently used on newly commercial developed aircraft. This document presents some of the lessons learned.
Standard

Compilation of Freezing Brake Experience and Potential Designs and Operating Procedures to Prevent Its Occurrence

2016-05-24
CURRENT
AIR4762A
This Aerospace Information Report (AIR) describes conditions under which freezing (frozen) brakes can occur and describes operating procedures which have been used to prevent or lessen the severity or probability of brake freezing. This document also identifies design features that some manufacturers implement to minimize the occurrence of freezing brakes. This document is not an Aerospace Recommended Practice (ARP) and therefore does not make recommendations based on a consensus of the industry. However, part of this document’s purpose is to describe the design and operational practices that some are using to minimize the risk of frozen brakes. NOTE: The following information is based upon experience gained across a wide-range of aircraft types and operational profiles, and should NOT take precedence over Aircraft Flight Manual or Flight Operations Procedures.
Standard

Unique Wheel and Brake Designs

2001-06-01
CURRENT
AIR5388
This SAE Aerospace Information Report (AIR) has been prepared by a panel of the SAE A-5A Committee and is presented to document unique design approaches used for aircraft wheels and brakes.
Standard

Information on Brake-By-Wire (BBW) Brake Control Systems

2014-07-29
CURRENT
AIR5372A
This SAE Aerospace Information Report (AIR) describes the design approaches used for current applications of aircraft Brake-by-Wire (BBW) control systems. The document also discusses the experience gained during service, and covers system, ergonomic, hardware, and development aspects. The document includes the lessons that have been learned during application of the technology. Although there are a variety of approaches that have been used in the design of BBW systems, the main focus of this document is on the current state of the art systems.
Standard

Information on Brake-By-Wire (BBW) Brake Control Systems

2003-03-12
HISTORICAL
AIR5372
A panel of the SAE A-5A Committee prepared this SAE Aerospace Information Report (AIR). The document describes the design approaches used for current applications of Brake-by-Wire (BBW) control systems that are used on commercial and military airplanes. The document also discusses the experience gained during service in the commercial and military environments, and covers system, ergonomic, hardware, and development aspects. The treatment includes the lessons that have been learned during application of the technology. Although there are a variety of approaches that have been used in the design of BBW systems, the main focus of this document is on systems that use the electro-hydraulic method of control. The overall range of implementations is briefly described in 2.3. Sections 3, 4, and 5 describe the electro-hydraulic method in detail.
Standard

Test Method for Catalytic Carbon Brake Disk Oxidation

2013-03-11
WIP
AIR5567B
The scope of the test method is to provide stakeholders including fluid manufacturers, brake manufacturers, aircraft constructors, aircraft operators and airworthiness authorities with a relative assessment of the effect of deicing chemicals on carbon oxidation. This simple test is only designed to assess the relative effects of runway deicing chemicals by measuring mass change of contaminated and bare carbon samples tested under the same conditions. It is not possible to set a general acceptance threshold oxidation limit based on this test method because carbon brake stack oxidation is a function of heat sink design and the operating envirnoment.
Standard

Sizing of Emergency Braking Systems

2018-04-18
WIP
ARP6952
The pupose of this SAE AIR is to provide guidelines for sizing stored energy systems in use in emergency braking systems, in light of their intended purpose and applicable certification regulations.
Standard

Assessment of Aircraft Wheel Sealing Systems

2005-07-27
CURRENT
ARP5146
This SAE Aerospace Recommended Practice (ARP) is intended to provide guidance on verifying the integrity of inflation pressure sealing systems of aircraft wheel/tire assemblies.
Standard

Disposition of Damaged Wheels Involved in Accidents/Incidents

2005-05-20
CURRENT
ARP5600
This SAE Aerospace Recommended Practice (ARP) establishes a procedure for disposition of aircraft wheels that have been involved in accidents/incidents or have been exposed to overheat conditions or overload conditions from loss of adjacent tire pressure (paired wheels) or wheel tie bolts.
Standard

Aircraft Brake Temperature Measurement

2017-10-26
WIP
ARP6812
This SAE Aerospace Recommended Practice (ARP) covers the functional, design, construction, and test requirements for Brake Temperature Monitoring Systems (BTMS), and sometimes referred to as Brake Temperature Indication Systems (BTIS). The BTMS is limited to aircraft where a dispatch indication and brake temperature indication is required. The scope of this BTMS equipment shall be limited to the 1) brake temperature sensor or indicator, 2) temperature reference measurement, if required, and 3) processing and communication of brake temperature. This recommended practice will not address cockpit ergonomics and aircraft operating procedures.
Standard

Valve Special, Aircraft Wheel

2018-03-28
WIP
AS6817
Defines the requirements for a typical aircraft wheel valve assembly. Required material, tolerance(s) and appropriate finishes are provided.
Standard

Test Method for Catalytic Carbon Brake Disk Oxidation

2013-12-04
WIP
AS6289
The scope of the test method is to provide stakeholders including fluid manufacturers, brake manufacturers, aircraft constructors, aircraft operators and airworthiness authorities with a relative assessment of the effect of deicing chemicals on carbon oxidation. This test is designed to assess the relative effects of runway deicing chemicals by measuring mass change of contaminated and bare carbon samples tested under the same conditions.
Standard

INFORMATION ON ANTISKID SYSTEMS

1988-01-01
HISTORICAL
AIR1739
This Aerospace Information Report (AIR) has been prepared by a panel of the SAE A-5 Committee and is presented to document the design approaches and service experience from various applications of antiskid systems. This experience includes commercial and military applications.
Standard

Information on Antiskid Systems

2012-02-15
CURRENT
AIR1739B
This SAE Aerospace Information Report (AIR) has been prepared by a panel of the SAE A-5A Committee and is presented to document the design approaches and service experience from various applications of antiskid systems. This experience includes commercial and military applications.
Standard

BRAKE DYNAMICS

1997-01-01
HISTORICAL
AIR1064C
The landing gear is a complex multi-degree of freedom dynamic system and may encounter vibration problems induced by braking action. The vibratory modes can be induced by several frictional characteristics and brake design features. These should be assessed during the design concept and verified during the development of the hardware. This SAE Aerospace Information Report (AIR) has been prepared by a panel of the A-5A Subcommittee to present an overview of the landing gear system problems associated with aircraft brake dynamics and the approaches to the solution of these problems. In addition, facilities available for test and evaluation are presented and discussed.1
Standard

Braking System Dynamics

2007-09-26
CURRENT
AIR1064D
The aircraft landing gear is a complex multi-degree of freedom dynamic system, and may encounter vibration or dynamic response problems induced by braking action. The vibratory modes can be induced by brake and tire-ground frictional characteristics, antiskid operation, brake design features, landing gear design features, and tire characteristics. The impact of this vibration can range from catastrophic failure of critical system components or entire landing gears, to fatigue of small components, to passenger annoyance. It is therefore important that the vibration is assessed during the design concept phase, and verified during the development and testing phases of the system hardware. This SAE Aerospace Information Report (AIR) has been prepared by a panel of the A-5A Subcommittee to present an overview of the landing gear problems associated with aircraft braking system dynamics, and the approaches to the identification, diagnosis, and solution of these problems.
X